Subriemannian Geometry: The basic notations and examples

Winterschool in Geilo, Norway

Wolfram Bauer

Leibniz U. Hannover

March 4-10. 2018

W. Bauer (Leibniz U. Hannover)

Subriemannian geometry

March 4-10. 2018 1 / 33

Outline

- 1. Motivations, definitions and examples
- 2. Horizontal curves and an optimal control problem
- 3. More examples and constructions

Motivation: Sub-Riemannian geometry

Consider *n* classical particles with coordinates $\{q_1, \dots, q_n\}$.

Motion under constraints H: $f(q_1, \dots, q_n) = 0$, (holonomic), NH: $f(q_1, \dots, q_n, \dot{q}_1, \dots, \dot{q}_n) = 0$, (non-holonomic).

Exampels:

- H: A particle moving along a surface, or a pendulum.
- NH: Rolling of a ball on a plane (or some surface) without slipping or twisting.

Corresponding geometric structures on a manifold

- holonomic constraints —> integrable distribution (foliation of a manifold),
- non-holonomic constraints \longrightarrow Sub-Riemannian structure.

```
W. Bauer (Leibniz U. Hannover)
```

Subriemannian geometry

March 4-10. 2018 3 / 33

Parking a car: Rototranslation

Position of the car robot in 3-space: $(x, y, \vartheta) \in \mathbb{R}^2 \times \mathbb{S}^1$.

Possible movements• $X = \cos \vartheta \cdot \partial_x + \sin \vartheta \cdot \partial_y$,(in direction of the car)• $Y = \partial_\vartheta$,(rotation)• $Z = -\sin \vartheta \cdot \partial_x + \cos \vartheta \cdot \partial_y$,(orthogonal to the car).

Parkin a car: Rototranslation

Connecting positions: Which movements allow to reach from any position of the car any other position?

Observations

• Moving only along X and Z is not enough: it keeps the angle ϑ fixed.

span
$$\left\{X,Z\right\} = \operatorname{kern} d\vartheta$$
 and $d\vartheta = closed$ form,
 $[X,Z] = 0.$

• Moving along X and Y (parking procedure) might be sufficient for connecting positions.

$$span \{X, Y\} = kern \, \omega \quad where \quad \omega = -\sin \vartheta \, dx + \cos \vartheta \, dy.$$
$$[X, Y] = \left[\cos \vartheta \cdot \partial_x + \sin \vartheta \cdot \partial_y, \partial_\vartheta\right]$$
$$= -\sin \vartheta \cdot \partial_x + \cos \vartheta \cdot \partial_y = Z.$$
(Leibniz U. Hannover) Subriemannian geometry March 4-10. 2018 5 / 33

Sub-Riemannian Geometry

"Sub-Riemannian geometry models motions under non-holonomic constraints".

Definition

W. Bauer

A Sub-Riemannian manifold (shortly: SR-m) is a triple $(M, \mathcal{H}, \langle \cdot, \cdot \rangle)$ with:

- *M* is a smooth manifold (without boundary), dim $M \ge 3$ and $\mathcal{H} \subset TM$ is a vector distribution.
- \mathcal{H} is bracket generating of rank $k < \dim M$, i.e.

$$\operatorname{Lie}_{X}\mathcal{H} = T_{X}M.$$

• $\langle \cdot, \cdot \rangle_{\times}$ is a smoothly varying family of inner products on \mathcal{H}_{\times} for $x \in M$.

1.Example: Heisenberg group

Consider the 3- dimensional Heisenberg group $\mathbb{H}_3 \cong (\mathbb{R}^3, *)$ with product:

$$(x_1, y_1, z_1) * (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2 + \frac{1}{2}[x_1y_2 - y_1x_2]).$$

Lie algebra of \mathbb{H}_3 :

On $\mathbb{H}_3 \cong \mathbb{R}^3$ define left-invariant vector fields: Let $q = (x, y, z) \in \mathbb{H}_3$: ¹

$$[X_1 f](q) = \frac{df}{dt} \left(q * (t, 0, 0) \right)_{|_{t=0}}$$

= $\frac{df}{dt} \left(x + t, 0, z - \frac{yt}{2} \right) = \left[\left(\frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial z} \right) f \right](q).$

Similarly, with curves $(0, t, 0)_t$ and $(0, 0, t)_t$:

$$X_2 = rac{\partial}{\partial y} + rac{x}{2}rac{\partial}{\partial z}$$
 and $Z = rac{\partial}{\partial z}$.

1" X left-invariant": $X_{g*h} = (L_g)_* X_h$ with the left-multiplication $L_g : \mathbb{H}_3 \to \mathbb{H}_3$.W. Bauer (Leibniz U. Hannover)Subriemannian geometryMarch 4-10. 20187 / 33

Heisenberg group as SR-manifold

Known fact:

The Lie algebra $(\mathfrak{h}_3, [\cdot, \cdot])$ of \mathbb{H}_3 can be identified with:

$$\mathfrak{h}_3 = \operatorname{span}\left\{X_1, X_2, Z\right\}$$
 with $[\cdot, \cdot] = \operatorname{commtator} of vector fields.$

Observation

If we calculate Lie-brackets $[\cdot, \cdot]$, then one only finds one non-trivial bracket relation is:

$$[X_1, X_2] = X_1 X_2 - X_2 X_1 = Z.$$

- Put $\mathcal{H} = \operatorname{span}\{X_1, X_2\} \subset T\mathbb{H}_3$ (distribution),
- Define $\langle \cdot, \cdot \rangle$ on \mathcal{H} by declaring X_1 and X_2 pointwise orthonormal.

Conclusion: $(\mathbb{H}_3, \mathcal{H}, \langle \cdot, \cdot \rangle)$ defines a Sub-Riemannian structure on \mathbb{H}_3 .

Horizontal curves and cc-distance:

On a SR-manifold $(M, \mathcal{H}, \langle \cdot, \cdot \rangle)$ we consider horizontal objects, i.e. objects under non-holonomic constraints.

Example

Consider a curve $\gamma : [0,1] \rightarrow M$: ^a

• γ is called horizontal, (a.e.) it is tangential to \mathcal{H} , i.e.

 $\dot{\gamma}(t) \in \mathcal{H}_{\gamma(t)}.$

• The curve length is defined by:

$$\ell(\gamma) := \int_0^1 \sqrt{ig\langle \dot{\gamma}(t), \dot{\gamma}(t) ig
angle_{\gamma(t)}} dt.$$

• SR geodesic = locally length minimizing horizontale curve.

^apiecewise C^1 or just absolutely continuous

W. Bauer (Leibniz U. Hannover)

Subriemannian geometry

March 4-10. 2018 9 / 33

Carnot-Carathéodory metric

Definition: Sub-Riemannian distanced (cc-distance) The SR distance between two points $a, b \in M$ is defined by:

$$d_{\mathsf{cc}}(a,b) := \inf \Big\{ \ell(\gamma) \ : \ \gamma \ \textit{horizontal} \ , \gamma(0) = a, \gamma(1) = b \Big\}.$$

Question: Let *M* be a connected SR-manifold. Can we connect any two points on *M* by horizontal curves?

Theorem (W.-L. Chow 1939, P.-K. Rashevskii 1938)

Any two points on a connected SR-manifold can be connected by piecewise smooth horizontal curves.

Consequence: The cc-distance d_{cc}^2 on a connected SR-manifold is finite. Hence (M, d_{cc}) forms a metric space.

²Carnot-Carathéodory distance

W. Bauer (Leibniz U. Hannover)

Geodesic equations

Some question:

- How can we obtain Sub-Riemannian geodesics?
- Relation to d_{cc}: can we realize the cc-distance between two point by a (piecewise) smooth SR geodesic?
- Is the distance $x \mapsto d_{cc}(x_0, x)$ smooth for fixed points x_0 ?

Let $(M, \mathcal{H}, \langle \cdot, \cdot \rangle)$ be a SR-manifold. Let

$$[X_1, \cdots, X_m] =$$
vector fields and $m =$ rank \mathcal{H} .

an local orthonormal frame around a point $q \in M$, i.e.

$$\mathcal{H}_q = ext{span} \Big\{ X_1(q), \cdots, X_m(q) \Big\}$$
 and $ig\langle X_i(q), X_j(q) ig
angle = \delta_{ij}.$

Idea: Expand locally the derivative of a horizontal curve with respect to the above frame

SR-geodesics and optimal control

Observation

Let $\gamma : [0,1] \rightarrow M$ be horizontal. With suitable coefficients $u_i(t)$ one can write

$$\gamma'(t) = \sum_{j=1}^{m} u_j(t) \cdot X_j(t) \implies \langle \gamma'(t), \gamma'(t) \rangle = \sum_{j=1}^{m} u_j^2(t)$$

Finding SR-geodesics between $A, B \in M$ = optimal control problem OCP. OCP: *Minimize the cost*

$$J_T(u) := \frac{1}{2} \int_0^T \sqrt{\sum_{j=1}^m u_i^2(t)} dt$$

under the conditions

$$\gamma' = \sum_{j=1}^{m} u_j \cdot X_j(\gamma)$$
 and $\gamma(0) = A, \gamma(T) = B.$

W. Bauer (Leibniz U. Hannover)

SR-geodesic: a Hamiltonian formalism

Remark:

Instead of minimizing a lenght we may equivalently minimize an "energy": **OCP**: Minimize the cost

$$J_{T}(u) := \frac{1}{2} \int_{0}^{T} \sum_{j=1}^{m} u_{i}^{2}(t) dt$$

under the conditions

$$\gamma' = \sum_{j=1}^m u_j \cdot X_j(\gamma)$$
 and $\gamma(0) = A, \ \gamma(T) = B.$

Hamiltonian formalism (as known in Riemannian geometry):

Assign a Sub-Riemannian Hamiltonian $H_{sr} \in C^{\infty}(T^*M)$ to the problem:

$$H_{\mathrm{sr}}(q,p) = \sum_{j=1}^{m} p\Big(X_j(q)\Big)^2$$
 where $(q,p) \in T_q^*M$.

W. Bauer (Leibniz U. Hannover)

Subriemannian geometry

March 4-10. 2018 13 / 33

SR-geodesic: a Hamiltonian formalism

With the Poisson bracket $\{\cdot, \cdot\}$ on $C^{\infty}(T^*M)$ consider:

$$\vec{H}_{sr} = \{\cdot, H\} = \frac{\partial H}{\partial p} \cdot \frac{\partial}{\partial q} - \frac{\partial H}{\partial q} \cdot \frac{\partial}{\partial p} = Hamiltonian \ vector \ field$$

The Hamiltonian vector field defines the geodesic flow on T^*M and projections of the flow to M give SR-geodesics:

Theorem (normal geodesics)

Let $\zeta(t) = (\gamma(t), p(t))$ be a solution to the normal geodesic equations:

$$\dot{q}=rac{\partial H}{\partial p_i}(q,p)$$
 and $\dot{p}=-rac{\partial H}{\partial q_i}(q,p),$ $i=1\cdots \dim M.$

Then $\gamma(t)$ locally minimizes the SR-distance.

Proof: ³

³R. Montgomery, *A tour of Subriemannian Geometries, Their Geodesics and Applications* Math. Surveys and Monographs, 2002.

W. Bauer (Leibniz U. Hannover)

SR-geodesics

Remark

There are various differences to the setting of a Riemannian manifold:

• The Hamiltonian in Riemannian geometry can be expressed as

$$H_{\mathsf{r}}(q,p) = \sum_{i,j=1}^{n} g^{ij}(q) p_i p_j, \qquad g^{ij} := inverse metric tensor.$$

In SR-geometry g_{ij} is an $m \times m$ -matrix and not invertible on TM.

• There are no 2nd order geodesic equations in the SR-setting such as

$$\ddot{q}^k = \Gamma^k_{ij} \dot{q}_i \dot{q}_j.$$

The obtained regularity of SR-geodesics is not clear.

• In SR-geometry there may be singular geodesics which do not solve the geodesic equations in the above theorem.

The falling cat:

A connectivity in SR geometry

Generalizations of the Heisenberg group

A Lie group G has trivial tangent bundle and the last construction of a trivial bundle can be generalized:

Left-invariant structure

- Let \mathfrak{g} denote the Lie algebra of G.
- Let $V \subset \mathfrak{g}$ be a subspace of \mathfrak{g} with inner product $\langle \cdot, \cdot \rangle_V$ and

$$\mathfrak{g} = \mathsf{Lie}(V) = \mathsf{span}\Big\{v, [w, x], \big[y, [w, x]\big], \cdots : x, y, w \in V\Big\}$$

Identify V (via left-translation) with a space of left-invariant vector fields on G.

• The G becomes a sub-Riemannian manifold $(G, \mathcal{H}, \langle \cdot, \cdot \rangle)$ with:

$$\mathcal{H} = V$$

 $\langle \cdot, \cdot
angle_q = \langle (dL_q)^{-1} \cdot, (dL_q)^{-1} \cdot
angle_V.$

W. Bauer (Leibniz U. Hannover)

Subriemannian geometry

March 4-10. 2018 17 / 33

Contact structures

Let Θ be a one-form on a manifold M of dimension dim M = 2k + 1. Put:

$$\mathcal{H}_q := \operatorname{kern}(\Theta_q) \subset T_q M, \qquad (q \in M).$$

Contact form

Assume that Θ has the following properties:

• the restriction of $d\Theta_q$ to \mathcal{H}_q is non-degenerate ^a for each $q \in M$:

If
$$v \in \mathcal{H}$$
 with $d\Theta(v, w) = 0$ for all $w \in \mathcal{H}_q$, then $v = 0$.

• equivalently: the form

$$\omega := \Theta \wedge \left(d\Theta \right)^{2k} \neq 0$$

does not vanish at any point of M (= ω is a volume form):

18 / 33

^aa symplectic form

W. Bauer (Leibniz U. Hannover)

Contact manifolds

Lemma

Let Θ be a contact form on M. Then

 $\mathcal{H} := \ker \Theta \subset TM$

is a bracket generating distribution.

Proof: Use Cartan's formula:

$$d\Theta(X, Y) = X\Theta(Y) - Y\Theta(X) - \Theta([X, Y]).$$

Let X, Y be horizontal, i.e. $X_q, Y_q \in \mathcal{H}_q = \text{kern } \Theta_q$ for all $q \in M$. Then

$$\Theta(X) = \Theta(Y) = 0 \implies d\Theta(X, Y) = -\Theta([X, Y]).$$

Since $d\Theta$ is non-degenerate on \mathcal{H}_q we find X, Y with

 $[X, Y]_q \notin \operatorname{kern}\Theta_q = \mathcal{H}_q.$

W. Bauer (Leibniz U. Hannover)	Subriemannian geometry	March 4-10. 2018	19 / 33

Contact manifolds (continued)

Choose an almost complex structure $J : \mathcal{H} \to \mathcal{H}$ such that

$$\langle \cdot, \cdot
angle = d\Theta ig(J \cdot, \cdot ig), \quad ext{ and } \quad J^2 = -\mathsf{I}$$

is an inner product on \mathcal{H} (symmetric, positive definite).

Definition (contact Sub-Riemannian manifold)

The tripel $(M, \mathcal{H}, \langle \cdot, \cdot \rangle)$ is called contact Sub-Riemannian manifold.

Example: Consider again the Heisenberg group $\mathbb{H}_3 \cong \mathbb{R}^3$ with distribution:

$$\mathcal{H} = \operatorname{span}\left\{\frac{\partial}{\partial x} - \frac{y}{2}\frac{\partial}{\partial z}, \frac{\partial}{\partial y} + \frac{x}{2}\frac{\partial}{\partial z}\right\} = \operatorname{kern}\left(\underbrace{dz - \frac{x}{2}dy + \frac{y}{2}dx}_{=\Theta}\right).$$

Moreover, Θ is a contact form and \mathbb{H}_3 is a contact SR-manifold:

$$\Theta \wedge d\Theta = -\Theta \wedge (dx \wedge dy) = -dx \wedge dy \wedge dz \neq 0.$$

Rototranslation group: How to park a car?

Possible movements

• $X = \cos \vartheta \cdot \partial_x + \sin \vartheta \cdot \partial_y$,

•
$$Y = \partial_{\vartheta}$$
,

- $Z = -\sin \vartheta \cdot \partial_x + \cos \vartheta \cdot \partial_y$,
- (in direction of the car)
 (rotation)
 (orthogonal to the car).

Good choice:

 $\mathcal{H} = \operatorname{span} \{X, Y\} = \operatorname{kern} \omega \quad \text{with} \quad \omega = -\sin \vartheta \cdot dx + \cos \vartheta \cdot dy.$

 $\omega \wedge d\omega = \omega \wedge \left(-\cos\vartheta \cdot d\vartheta \wedge dx - \sin\vartheta \cdot d\vartheta \wedge dy \right) = -dx \wedge dy \wedge d\vartheta \neq 0.$

```
W. Bauer (Leibniz U. Hannover)
```

Subriemannian geometry

March 4-10. 2018 21 / 33

Sub-Riemannian structures on spheres

Different from a Lie group it is well-known that most of the Euclidean unit spheres $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ of dimension *n* do not have a trivial tangent bundle.

Exceptions

Precisely the spheres \mathbb{S}^n where n = 1, 3, 7 have trivial tangent bundle.

Questions: Are there:

- (1) bracket generating distributions on Euclidean spheres?
- (2) trivializable bracket generating distributions *H* on Sⁿ,
 (i.e. *H* is trivial as a vector bundle)?

Answers:

- (1) There are various constructions:
 - odd dimensional spheres S^{2k+1} ⊂ R²ⁿ ≃ Cⁿ carry a contact structure (from the diagonal action of S¹ on Cⁿ),
 - via (quaternionic) Hopf fibration in some dimensions, ···
- (2) In some dimensions via canonical vector fields.

SR-strucures on spheres

There are various constructions of SR-structures on Euclidean spheres. Some models arise from different points of view, e.g. S^3 or \mathbb{H}_3 are:

Lie groups, total space of a fiber bundle (e.g. Hopf fibration), contact manifolds, ···

🔋 W. -B. K. Furutani, C. Iwasaki

Trivializable sub-Riemannian structures on spheres, Bull. Sci. math. 137 (2013), 361- 385.

O. Calin, D.-C. Chang,

Sub-Riemannian geometry on the sphere S^3 , Canad. J. Math. 61 (4) (2009) 721 - 739.

🔋 I. Markina, M.G. Molina,

Sub-Riemannian geodesics and heat operator on odd dimensional spheres, Anal. Math. Phys. 2 (2) (2012) 123 - 147

W. Bauer (Leibniz U. Hannover)

Subriemannian geometry

March 4-10. 2018 23 / 33

Adams Theorem

Theorem (J.F. Adams, 1962)

The maximal dimension $\gamma(n)$ of a trivial subbundle in $T\mathbb{S}^n$ is:

$$\gamma(n)=2^a+8b-1.$$

The numbers $0 \le a < 4$ and $0 \le b$ are determined through the relations:

$$n+1=2^{a+4b}\times [odd].$$

Canonical vector fields: For $\alpha = 1, \dots, \gamma(n)$ consider:

$$X_{\alpha} := \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} a_{ij}^{\alpha} x_i \frac{\partial}{\partial x_j}, \quad \text{with} \quad A_{\alpha} = (a_{ij}^{\alpha}) \in \mathbb{R}(n+1).$$

Assume that the matrices A_{α} fulfill the Clifford relations:

$$A_{\alpha}A_{\beta} + A_{\beta}A_{\alpha} = -2\delta_{\alpha\beta}I.$$

Sub-Riemannian structures via canonical vector fields

Lemma

The restriction of the canonical vector fields to \mathbb{S}^n are orthonormal at each point of \mathbb{S}^n . The distribution:

$$\mathcal{H} = \mathsf{span}\Big\{X_{lpha} \ : \ lpha = 1, \cdots, \gamma(n)\Big\}$$

defines a maximal dimensional trivial subbundle of TS^n .

The Clifford relations imply relations on the brackets of canonical vector fields. In particular, these show:

$$\big[X_{\alpha}\big[X_{\beta}\big[X_{\gamma}\cdots\big]\big]\big]\in \mathsf{span}\Big\{X_i,\big[X_j,X_k\big]\ :\ i,j,k=1,\cdots,\gamma(n)\Big\}.$$

Necessary condition for the bracket generating property:

$$\rho(n) := \gamma(n) + \binom{\gamma(n)}{2} > n.$$
 (*)

W. Bauer (Leibniz U. Hannover)

Subriemannian geometry

March 4-10. 2018 25 / 33

Trivializable Sub-Riemannian structures on sphere

Lemma Property (*) precisely holds in the following dimensions:

n	1	3	7	15	23	31	63
$\gamma(n)$	1	3	7	8	7	9	11
$\rho(n)$	1	6	28	36	28	45	66

Next task: Sufficient conditions for the bracket generating property.

Theorem, (B. Furutani, Iwasaki)

Trivializable Sub-Riemannian structures on spheres S^n via a Clifford module structure only exist in the following dimensions:

$$n = 3, 7, 15.$$

On \mathbb{S}^7 there are trivializable structures of rank 4, 5, 6.

Question: Are there Subriemannian structures on exotic 7-spheres?

Gromoll-Meyer exotic 7-sphere Σ_{GM}^7

Exotic 7-sphere as base of a Δ -principal bundle

With $\Delta = \{(\lambda, \lambda) : \lambda \in \mathsf{Sp}(1)\}$ und $G = \mathsf{Sp}(1) \times \mathsf{Sp}(1) \supset \Delta$.

Theorem (B., Furutani, Iwasaki, 2016)

The bi-quotient of compact groups induces a rank 4 SR-structure on the Gromoll-Meyer exotic 7-sphere.

$$T(Sp(2)) = V^{\Delta} \oplus H^{\Delta} = V^{G} \oplus H^{G}$$
 und $H^{G} \subset H^{\Delta}$.

W. Bauer (Leibniz U. Hannover)

Subriemannian geometry

March 4-10. 2018 27 / 33

Sub-Riemannian structures of bundle type

Let (M, g_M) and (N, g_N) be Riemannian manifolds with Riemannian submersion:

$$\pi: M \to N.$$

Properties

Let $q \in M$ and $p = \pi(q) \in N$.

- kern $d\pi_q \subset T_q M$ is a the space tangent to the fibre $\pi^{-1}(p)$ at q.
- The restriction of the differential

$$d\pi_q: \mathcal{H}_q:= ig(\ker d\pi_qig)^\perp \subset T_q M o T_p N$$

is an isometry.

• On $\mathcal H$ consider the restriction $\langle \cdot, \cdot \rangle$ of the metric on $\mathcal TM$

These data may give a SR-structure of bundle type. (Note: bracket generating property is not clear in general and has to be checked).

W. Bauer (Leibniz U. Hannover)

Example: Hopf fibration

Consider the three sphere as a subset of \mathbb{C}^2 :

$$\mathbb{S}^3 = \left\{ z = (z_1, z_2) \in \mathbb{C}^2 \ : \ |z_1|^2 + |z_2|^2 = 1
ight\} \subset \mathbb{C}^2.$$

Definition (Hopf fibration)

The Hopf fibration is the submersion map

$$\pi: \mathbb{S}^3 \to \mathbb{S}^2_{\frac{1}{2}}: \pi(z) := \frac{1}{2} \Big(|z_1|^2 - |z_2|^2, \operatorname{Re}(z_1\overline{z}_2), \operatorname{Im}(z_1\overline{z}_2) \Big)$$

where $\mathbb{S}^2_{\frac{1}{2}}$ is the 2-sphere of radius 1/2.

Theorem: The Hopf fibration defines a principal \mathbb{S}^1 -bundle, where \mathbb{S}^1 act by componentewise multiplication on $\mathbb{S}^3 \subset \mathbb{C}^2$.

Remark: The corresponding distribution on \mathbb{S}^3 of bundle type is bracket generating (and coincides with a contact structure on \mathbb{S}^3).

Summary

- Sub-Riemannian geometry models motion under non-holonomic constraints (mechanical systems, rolling of manifolds, parking a car, falling cat...)
- Connected SR-manifolds are metric spaces with the cc-distance.
- Sub-Riemannian geodesics \longleftrightarrow optimal control problem.
- Examples include: some Lie groups, (e.g. Heisenberg group or S³), Euclidean spheres, some principal bundles (e.g. Hopf fibration).

References

A codimer	nsion 3sub-	ni, C.Iwasaki, <i>Riemannian structure on a</i> ential geometry and its app),	
WB. K. <i>Trivializab</i> 137 (2013)	le sub-Rier	mannian structures on sph	<i>eres</i> , Bull. Sci. matl	٦.	
	annian Geo	ng ometry - General Theory a y Press, 2009.	nd Examples,		
A. Bellaich Sub-Riema		<i>metry</i> , Basel-Boston-Berli	n, 1996.		
M. Gromov, <i>Carnot-Carathéodor spaces seen from within</i> , Sub-Riemannian Geometry, Birkhäuser, Progress in Math. 144, (1996), 79-323.					
W. Bauer (Leibniz U. I	Hannover)	Subriemannian geometry	March 4-10. 2018	31 / 33	

References

I. Markina, M.G. Molina,

Sub-Riemannian geodesics and heat operator on odd dimensional spheres, Anal. Math. Phys. 2 (2) (2012) 123 - 147

I. Markina,

Geodesics in geometry with constraints and applications. Quantization, PDEs, and geometry, 153- 314, in: Oper. Theory Adv. Appl., 251, Adv. Partial Differ. Equ. (Basel), Birkhäuser/Springer, Cham, 2016.

R. Montgomery,

A tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, 91, 2002.

Thank you for your attention!

W. Bauer (Leibniz U. Hannover)

Subriemannian geometry

March 4-10. 2018 33 / 33