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Motivation: Sub-Riemannian geometry

Consider n classical particles with coordinates
{

q1, · · · , qn

}
.

Motion under constraints

H: f (q1, · · · , qn) = 0, (holonomic),

NH: f (q1, · · · , qn, q̇1, · · · , q̇n) = 0, (non-holonomic).

Exampels:

H: A particle moving along a surface, or a pendulum.

NH: Rolling of a ball on a plane (or some surface) without slipping or
twisting.

Corresponding geometric structures on a manifold

holonomic constraints −→ integrable distribution (foliation of a
manifold),

non-holonomic constraints −→ Sub-Riemannian structure.
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Parking a car: Rototranslation

Position of the car robot in 3-space: (x , y , ϑ) ∈ R2 × S1.

Possible movements

X = cosϑ · ∂x + sinϑ · ∂y , (in direction of the car)

Y = ∂ϑ, (rotation)

Z = − sinϑ · ∂x + cosϑ · ∂y , (orthogonal to the car).
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Parkin a car: Rototranslation
Connecting positions: Which movements allow to reach from any
position of the car any other position?

Observations

Moving only along X and Z is not enough: it keeps the angle ϑ fixed.

span
{

X ,Z
}

= kerndϑ and dϑ = closed form,

[X ,Z ] = 0.

Moving along X and Y (parking procedure) might be sufficient for
connecting positions.

span
{

X ,Y
}

= kern ω where ω = − sinϑdx + cosϑdy .

[X ,Y ] =
[

cosϑ · ∂x + sinϑ · ∂y , ∂ϑ
]

= − sinϑ · ∂x + cosϑ · ∂y = Z .
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Sub-Riemannian Geometry

”Sub-Riemannian geometry models motions under
non-holonomic constraints”.

Definition

A Sub-Riemannian manifold (shortly: SR-m) is a triple (M,H, 〈·, ·〉) with:

M is a smooth manifold (without boundary), dim M ≥ 3 and
H ⊂ TM is a vector distribution.

H is bracket generating of rank k < dim M, i.e.

LiexH = TxM.

〈·, ·〉x is a smoothly varying family of inner products on Hx for x ∈ M.
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1.Example: Heisenberg group
Consider the 3- dimensional Heisenberg group H3

∼= (R3, ∗) with product:

(
x1, y1, z1

)
∗
(
x2, y2, z2

)
=
(

x1 + x2, y1 + y2, z1 + z2 +
1

2
[x1y2 − y1x2]

)
.

Lie algebra of H3:

On H3
∼= R3 define left-invariant vector fields: Let q = (x , y , z) ∈ H3: 1

[
X1f

]
(q) =

df

dt

(
q ∗ (t, 0, 0)

)
|t=0

=
df

dt

(
x + t, 0, z − yt

2

)
=

[(
∂

∂x
− y

2

∂

∂z

)
f

]
(q).

Similarly, with curves (0, t, 0)t and (0, 0, t)t :

X2 =
∂

∂y
+

x

2

∂

∂z
and Z =

∂

∂z
.

1”X left-invariant”: Xg∗h = (Lg )∗Xh with the left-multiplication Lg : H3 → H3.
W. Bauer (Leibniz U. Hannover ) Subriemannian geometry March 4-10. 2018 7 / 33

Heisenberg group as SR-manifold

Known fact:

The Lie algebra (h3, [·, ·]) of H3 can be identified with:

h3 = span
{

X1,X2,Z
}

with [·, ·] = commtator of vector fields.

Observation

If we calculate Lie-brackets [·, ·], then one only finds one non-trivial
bracket relation is: [

X1,X2

]
= X1X2 − X2X1 = Z .

Put H = span{X1,X2} ⊂ TH3 (distribution),

Define 〈·, ·〉 on H by declaring X1 and X2 pointwise orthonormal.

Conclusion: (H3,H, 〈·, ·〉) defines a Sub-Riemannian structure on H3.
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Horizontal curves and cc-distance:
On a SR-manifold (M,H, 〈·, ·〉) we consider horizontal objects, i.e. objects
under non-holonomic constraints.

Example

Consider a curve γ : [0, 1]→ M: a

γ is called horizontal, (a.e.) it is tangential to H, i.e.

γ̇(t) ∈ Hγ(t).

The curve length is defined by:

`(γ) :=

∫ 1

0

√〈
γ̇(t), γ̇(t)

〉
γ(t)

dt.

SR geodesic = locally length minimizing horizontale curve.

apiecewise C 1 or just absolutely continuous
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Carnot-Carathéodory metric

Definition: Sub-Riemannian distanced (cc-distance)

The SR distance between two points a, b ∈ M is defined by:

dcc(a, b) := inf
{
`(γ) : γ horizontal , γ(0) = a, γ(1) = b

}
.

Question: Let M be a connected SR-manifold. Can we connect any two
points on M by horizontal curves?

Theorem (W.-L. Chow 1939, P.-K. Rashevskii 1938)

Any two points on a connected SR-manifold can be connected by
piecewise smooth horizontal curves.

Consequence: The cc-distance dcc
2 on a connected SR-manifold is

finite. Hence (M, dcc) forms a metric space.

2Carnot-Carathéodory distance
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Geodesic equations

Some question:

How can we obtain Sub-Riemannian geodesics?

Relation to dcc : can we realize the cc-distance between two point by
a (piecewise) smooth SR geodesic?

Is the distance x 7→ dcc(x0, x) smooth for fixed points x0?

Let (M,H, 〈·, ·〉) be a SR-manifold. Let[
X1, · · · ,Xm

]
= vector fields and m = rankH.

an local orthonormal frame around a point q ∈ M, i.e.

Hq = span
{

X1(q), · · · ,Xm(q)
}

and
〈
Xi (q),Xj(q)

〉
= δij .

Idea: Expand locally the derivative of a horizontal curve with respect to
the above frame
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SR-geodesics and optimal control

Observation

Let γ : [0, 1]→ M be horizontal. With suitable coefficients ui (t) one can
write

γ′(t) =
m∑
j=1

uj(t) · Xj(t) =⇒
〈
γ′(t), γ′(t)

〉
=

m∑
j=1

u2
i (t).

Finding SR-geodesics between A,B ∈ M= optimal control problem OCP.

OCP: Minimize the cost

JT (u) :=
1

2

∫ T

0

√√√√ m∑
j=1

u2
i (t)dt

under the conditions

γ′ =
m∑
j=1

uj · Xj(γ) and γ(0) = A, γ(T ) = B.
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SR-geodesic: a Hamiltonian formalism
Remark:

Instead of minimizing a lenght we may equivalently minimize an ”energy”:

OCP: Minimize the cost

JT (u) :=
1

2

∫ T

0

m∑
j=1

u2
i (t)dt

under the conditions

γ′ =
m∑
j=1

uj · Xj(γ) and γ(0) = A, γ(T ) = B.

Hamiltonian formalism (as known in Riemannian geometry):

Assign a Sub-Riemannian Hamiltonian Hsr ∈ C∞(T ∗M) to the problem:

Hsr(q, p) =
m∑
j=1

p
(

Xj(q)
)2

where (q, p) ∈ T ∗q M.
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SR-geodesic: a Hamiltonian formalism

With the Poisson bracket {·, ·} on C∞(T ∗M) consider:

→
Hsr =

{
·,H
}

=
∂H

∂p
· ∂
∂q
− ∂H

∂q
· ∂
∂p

= Hamiltonian vector field

The Hamiltonian vector field defines the geodesic flow on T ∗M and
projections of the flow to M give SR-geodesics:

Theorem (normal geodesics)

Let ζ(t) = (γ(t), p(t)) be a solution to the normal geodesic equations:

q̇ =
∂H

∂pi
(q, p) and ṗ = −∂H

∂qi
(q, p), i = 1 · · · dim M.

Then γ(t) locally minimizes the SR-distance.

Proof: 3

3R. Montgomery, A tour of Subriemannian Geometries, Their Geodesics and
Applications Math. Surveys and Monographs, 2002.
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SR-geodesics

Remark

There are various differences to the setting of a Riemannian manifold:

The Hamiltonian in Riemannian geometry can be expressed as

Hr(q, p) =
n∑

i ,j=1

g ij(q)pipj , g ij := inverse metric tensor.

In SR-geometry gij is an m ×m-matrix and not invertible on TM.

There are no 2nd order geodesic equations in the SR-setting such as

q̈k = Γk
ij q̇i q̇j .

The obtained regularity of SR-geodesics is not clear.

In SR-geometry there may be singular geodesics which do not solve
the geodesic equations in the above theorem.
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The falling cat: 

A connectivity 
problem
in SR geometry  
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Generalizations of the Heisenberg group

A Lie group G has trivial tangent bundle and the last construction of a
trivial bundle can be generalized:

Left-invariant structure

Let g denote the Lie algebra of G .

Let V ⊂ g be a subspace of g with inner product 〈·, ·〉V and

g = Lie(V ) = span
{

v , [w , x ],
[
y , [w , x ]

]
, · · · : x , y ,w ∈ V

}
.

Identify V (via left-translation) with a space of left-invariant vector
fields on G .

The G becomes a sub-Riemannian manifold (G ,H, 〈·, ·〉) with:

H = V

〈·, ·〉q =
〈
(dLq)−1·, (dLq)−1·〉V .
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Contact structures
Let Θ be a one-form on a manifold M of dimension dim M = 2k + 1. Put:

Hq := kern(Θq) ⊂ TqM, (q ∈ M).

Contact form

Assume that Θ has the following properties:

the restriction of dΘq to Hq is non-degenerate a for each q ∈ M:

If v ∈ H with dΘ(v ,w) = 0 for all w ∈ Hq, then v = 0.

equivalently: the form

ω := Θ ∧
(
dΘ
)2k 6= 0

does not vanish at any point of M (= ω is a volume form):

aa symplectic form
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Contact manifolds

Lemma

Let Θ be a contact form on M. Then

H := ker Θ ⊂ TM

is a bracket generating distribution.

Proof: Use Cartan’s formula:

dΘ(X ,Y ) = X Θ(Y )− Y Θ(X )−Θ([X ,Y ]).

Let X ,Y be horizontal, i.e. Xq,Yq ∈ Hq = kern Θq for all q ∈ M. Then

Θ(X ) = Θ(Y ) = 0 =⇒ dΘ(X ,Y ) = −Θ
(
[X ,Y ]

)
.

Since dΘ is non-degenerate on Hq we find X ,Y with

[X ,Y ]q /∈ kernΘq = Hq.

�
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Contact manifolds (continued)
Choose an almost complex structure J : H → H such that

〈·, ·〉 = dΘ
(
J·, ·
)
, and J2 = −I

is an inner product on H (symmetric, positive definite).

Definition (contact Sub-Riemannian manifold)

The tripel (M,H, 〈·, ·〉) is called contact Sub-Riemannian manifold.

Example: Consider again the Heisenberg group H3
∼= R3 with distribution:

H = span
{ ∂

∂x
− y

2

∂

∂z
,
∂

∂y
+

x

2

∂

∂z

}
= kern

(
dz − x

2
dy +

y

2
dx︸ ︷︷ ︸

=Θ

)
.

Moreover, Θ is a contact form and H3 is a contact SR-manifold:

Θ ∧ dΘ = −Θ ∧
(
dx ∧ dy

)
= −dx ∧ dy ∧ dz 6= 0.
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Rototranslation group: How to park a car?

Possible movements

X = cosϑ · ∂x + sinϑ · ∂y , (in direction of the car)

Y = ∂ϑ, (rotation)

Z = − sinϑ · ∂x + cosϑ · ∂y , (orthogonal to the car).

Good choice:

H = span
{

X ,Y
}

= kern ω with ω = − sinϑ · dx + cosϑ · dy .

y
^

ϑ

Car Robot

x

ω∧dω = ω∧
(
− cosϑ ·dϑ∧dx − sinϑ ·dϑ∧dy

)
= −dx ∧dy ∧dϑ 6= 0.
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Sub-Riemannian structures on spheres

Different from a Lie group it is well-known that most of the Euclidean unit
spheres Sn ⊂ Rn+1 of dimension n do not have a trivial tangent bundle.

Exceptions

Precisely the spheres Sn where n = 1, 3, 7 have trivial tangent bundle.

Questions: Are there:

(1) bracket generating distributions on Euclidean spheres?

(2) trivializable bracket generating distributions H on Sn,
(i.e. H is trivial as a vector bundle)?

Answers:

(1) There are various constructions:
I odd dimensional spheres S2k+1 ⊂ R2n ∼= Cn carry a contact structure

(from the diagonal action of S1 on Cn),
I via (quaternionic) Hopf fibration in some dimensions, · · ·

(2) In some dimensions via canonical vector fields.
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SR-strucures on spheres

There are various constructions of SR-structures on Euclidean spheres.
Some models arise from different points of view, e.g. S3 or H3 are:

Lie groups, total space of a fiber bundle (e.g. Hopf fibration),
contact manifolds, · · ·

W. -B. K. Furutani, C. Iwasaki

Trivializable sub-Riemannian structures on spheres, Bull. Sci. math. 137
(2013), 361- 385.

O. Calin, D.-C. Chang,

Sub-Riemannian geometry on the sphere S3, Canad. J. Math. 61 (4) (2009)
721 - 739.

I. Markina, M.G. Molina,

Sub-Riemannian geodesics and heat operator on odd dimensional spheres,
Anal. Math. Phys. 2 (2) (2012) 123 - 147
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Adams Theorem

Theorem (J.F. Adams, 1962)

The maximal dimension γ(n) of a trivial subbundle in TSn is:

γ(n) = 2a + 8b − 1.

The numbers 0 ≤ a < 4 and 0 ≤ b are determined through the relations:

n + 1 = 2a+4b × [odd].

Canonical vector fields: For α = 1, · · · , γ(n) consider:

Xα :=
n+1∑
i=1

n+1∑
j=1

aαij xi
∂

∂xj
, with Aα = (aαij ) ∈ R(n + 1).

Assume that the matrices Aα fulfill the Clifford relations:

AαAβ + AβAα = −2δαβI .
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Sub-Riemannian structures via canonical vector fields

Lemma

The restriction of the canonical vector fields to Sn are orthonormal at each
point of Sn. The distribution:

H = span
{

Xα : α = 1, · · · , γ(n)
}

defines a maximal dimensional trivial subbundle of TSn.

The Clifford relations imply relations on the brackets of canonical vector
fields. In particular, these show:[

Xα
[
Xβ
[
Xγ · · ·

]]]
∈ span

{
Xi ,
[
Xj ,Xk

]
: i , j , k = 1, · · · , γ(n)

}
.

Necessary condition for the bracket generating property:

ρ(n) := γ(n) +

(
γ(n)

2

)
> n. (∗)
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Trivializable Sub-Riemannian structures on sphere

Lemma Property (∗) precisely holds in the following dimensions:

n 1 3 7 15 23 31 63

γ(n) 1 3 7 8 7 9 11

ρ(n) 1 6 28 36 28 45 66

Next task: Sufficient conditions for the bracket generating property.

Theorem, (B. Furutani, Iwasaki)

Trivializable Sub-Riemannian structures on spheres Sn via a Clifford
module structure only exist in the following dimensions:

n = 3, 7, 15.

On S7 there are trivializable structures of rank 4, 5, 6.

Question: Are there Subriemannian structures on exotic 7-spheres?
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Gromoll-Meyer exotic 7-sphere Σ7
GM

Exotic 7-sphere as base of a ∆-principal bundle

∆

&&

⊂ G

ww
Sp(2)

πGxx
π∆ ''

S4 = Sp(2)/G Sp(2)/∆ = Σ7
GM

With ∆ = {(λ, λ) : λ ∈ Sp(1)} und G = Sp(1)× Sp(1) ⊃ ∆.

Theorem (B., Furutani, Iwasaki, 2016)

The bi-quotient of compact groups induces a rank 4 SR-structure on the
Gromoll-Meyer exotic 7-sphere.

T (Sp(2)) = V ∆ ⊕ H∆ = V G ⊕ HG und HG ⊂ H∆.
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Sub-Riemannian structures of bundle type
Let (M, gM) and (N, gN) be Riemannian manifolds with Riemannian
submersion:

π : M → N.

Properties

Let q ∈ M and p = π(q) ∈ N.

kern dπq ⊂ TqM is a the space tangent to the fibre π−1(p) at q.

The restriction of the differential

dπq : Hq :=
(
kern dπq

)⊥ ⊂ TqM → TpN

is an isometry.

On H consider the restriction 〈·, ·〉 of the metric on TM

These data may give a SR-structure of bundle type. (Note: bracket
generating property is not clear in general and has to be checked).
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Example: Hopf fibration
Consider the three sphere as a subset of C2:

S3 =
{

z = (z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1
}
⊂ C2.

Definition (Hopf fibration)

The Hopf fibration is the submersion map

π : S3 → S2
1
2

: π(z) :=
1

2

(
|z1|2 − |z2|2,Re(z1z2), Im(z1z2)

)
,

where S2
1
2

is the 2-sphere of radius 1/2.

Theorem: The Hopf fibration defines a principal S1-bundle, where S1 act
by componentewise multiplication on S3 ⊂ C2.

Remark: The corresponding distribution on S3 of bundle type is bracket
generating (and coincides with a contact structure on S3).
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Summary

Sub-Riemannian geometry models motion under non-holonomic
constraints (mechanical systems, rolling of manifolds, parking a car,
falling cat· · · )
Connected SR-manifolds are metric spaces with the cc-distance.

Sub-Riemannian geodesics ←→ optimal control problem.

Examples include: some Lie groups, (e.g. Heisenberg group or S3),
Euclidean spheres, some principal bundles (e.g. Hopf fibration).
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Thank you for your attention!
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