Subriemannian Geometry:

The basic notations and examples

Winterschool in Geilo, Norway

Wolfram Bauer
Leibniz U. Hannover

$$
\text { March 4-10. } 2018
$$

Outline

1. Motivations, definitions and examples
2. Horizontal curves and an optimal control problem
3. More examples and constructions

Motivation: Sub-Riemannian geometry

Consider n classical particles with coordinates $\left\{q_{1}, \cdots, q_{n}\right\}$.

Motion under constraints

$\mathrm{H}: f\left(q_{1}, \cdots, q_{n}\right)=0$, (holonomic),
NH: $f\left(q_{1}, \cdots, q_{n}, \dot{q}_{1}, \cdots, \dot{q}_{n}\right)=0$, (non-holonomic).

Exampels:

H : A particle moving along a surface, or a pendulum.
NH: Rolling of a ball on a plane (or some surface) without slipping or twisting.

Corresponding geometric structures on a manifold

- holonomic constraints \longrightarrow integrable distribution (foliation of a manifold),
- non-holonomic constraints \longrightarrow Sub-Riemannian structure.

Parking a car: Rototranslation

Position of the car robot in 3-space: $(x, y, \vartheta) \in \mathbb{R}^{2} \times \mathbb{S}^{1}$.
Possible movements

- $X=\cos \vartheta \cdot \partial_{x}+\sin \vartheta \cdot \partial_{y}$,
(in direction of the car)
- $Y=\partial_{\vartheta}$,
- $Z=-\sin \vartheta \cdot \partial_{x}+\cos \vartheta \cdot \partial_{y}$,
(orthogonal to the car).

Parkin a car: Rototranslation

Connecting positions: Which movements allow to reach from any position of the car any other position?

Observations

- Moving only along X and Z is not enough: it keeps the angle ϑ fixed.

$$
\begin{aligned}
\operatorname{span}\{X, Z\} & =\text { kernd } \vartheta \quad \text { and } \quad d \vartheta=\text { closed form } \\
{[X, Z] } & =0
\end{aligned}
$$

- Moving along X and Y (parking procedure) might be sufficient for connecting positions.

$$
\begin{aligned}
\operatorname{span}\{X, Y\} & =\operatorname{kern} \omega \quad \text { where } \quad \omega=-\sin \vartheta d x+\cos \vartheta d y \\
{[X, Y] } & =\left[\cos \vartheta \cdot \partial_{x}+\sin \vartheta \cdot \partial_{y}, \partial_{\vartheta}\right] \\
& =-\sin \vartheta \cdot \partial_{x}+\cos \vartheta \cdot \partial_{y}=Z
\end{aligned}
$$

Sub-Riemannian Geometry

"Sub-Riemannian geometry models motions under non-holonomic constraints".

Definition

A Sub-Riemannian manifold (shortly: SR-m) is a triple $(M, \mathcal{H},\langle\cdot, \cdot\rangle)$ with:

- M is a smooth manifold (without boundary), $\operatorname{dim} M \geq 3$ and $\mathcal{H} \subset T M$ is a vector distribution.
- \mathcal{H} is bracket generating of rank $k<\operatorname{dim} M$, i.e.

$$
\operatorname{Lie}_{x} \mathcal{H}=T_{x} M
$$

- $\langle\cdot, \cdot\rangle_{x}$ is a smoothly varying family of inner products on \mathcal{H}_{x} for $x \in M$.

1.Example: Heisenberg group

Consider the 3 - dimensional Heisenberg group $\mathbb{H}_{3} \cong\left(\mathbb{R}^{3}, *\right)$ with product:

$$
\left(x_{1}, y_{1}, z_{1}\right) *\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}+\frac{1}{2}\left[x_{1} y_{2}-y_{1} x_{2}\right]\right)
$$

Lie algebra of \mathbb{H}_{3} :

On $\mathbb{H}_{3} \cong \mathbb{R}^{3}$ define left-invariant vector fields: Let $q=(x, y, z) \in \mathbb{H}_{3}$: ${ }^{1}$

$$
\begin{aligned}
{\left[X_{1} f\right](q) } & =\frac{d f}{d t}(q *(t, 0,0))_{\left.\right|_{t=0}} \\
& =\frac{d f}{d t}\left(x+t, 0, z-\frac{y t}{2}\right)=\left[\left(\frac{\partial}{\partial x}-\frac{y}{2} \frac{\partial}{\partial z}\right) f\right](q)
\end{aligned}
$$

Similarly, with curves $(0, t, 0)_{t}$ and $(0,0, t)_{t}$:

$$
X_{2}=\frac{\partial}{\partial y}+\frac{x}{2} \frac{\partial}{\partial z} \quad \text { and } \quad Z=\frac{\partial}{\partial z}
$$

${ }^{1 "} X$ left-invariant": $X_{g * h}=\left(L_{g}\right)_{*} X_{h}$ with the left-multiplication $L_{g}: \mathbb{H}_{3} \rightarrow \mathbb{H}_{3}$.
W. Bauer (Leibniz U. Hannover)

Subriemannian geometry

Heisenberg group as SR-manifold

Known fact:

The Lie algebra $\left(\mathfrak{h}_{3},[\cdot, \cdot]\right)$ of \mathbb{H}_{3} can be identified with:

$$
\mathfrak{h}_{3}=\operatorname{span}\left\{X_{1}, X_{2}, Z\right\} \quad \text { with } \quad[\cdot, \cdot]=\text { commtator of vector fields. }
$$

Observation

If we calculate Lie-brackets $[\cdot, \cdot]$, then one only finds one non-trivial bracket relation is:

$$
\left[X_{1}, X_{2}\right]=X_{1} X_{2}-X_{2} X_{1}=Z
$$

- Put $\mathcal{H}=\operatorname{span}\left\{X_{1}, X_{2}\right\} \subset T \mathbb{H}_{3}$ (distribution),
- Define $\langle\cdot, \cdot\rangle$ on \mathcal{H} by declaring X_{1} and X_{2} pointwise orthonormal.

Conclusion: $\left(\mathbb{H}_{3}, \mathcal{H},\langle\cdot, \cdot\rangle\right)$ defines a Sub-Riemannian structure on \mathbb{H}_{3}.

Horizontal curves and cc-distance:

On a SR-manifold ($M, \mathcal{H},\langle\cdot, \cdot\rangle$) we consider horizontal objects, i.e. objects under non-holonomic constraints.

Example

Consider a curve $\gamma:[0,1] \rightarrow M$: ${ }^{a}$

- γ is called horizontal, (a.e.) it is tangential to \mathcal{H}, i.e.

$$
\dot{\gamma}(t) \in \mathcal{H}_{\gamma(t)}
$$

- The curve length is defined by:

$$
\ell(\gamma):=\int_{0}^{1} \sqrt{\langle\dot{\gamma}(t), \dot{\gamma}(t)\rangle_{\gamma(t)}} d t
$$

- SR geodesic = locally length minimizing horizontale curve.
${ }^{a}$ piecewise C^{1} or just absolutely continuous

Carnot-Carathéodory metric

Definition: Sub-Riemannian distanced (cc-distance)
The SR distance between two points $a, b \in M$ is defined by:

$$
d_{\mathrm{cc}}(a, b):=\inf \{\ell(\gamma): \gamma \text { horizontal }, \gamma(0)=a, \gamma(1)=b\} .
$$

Question: Let M be a connected $S R$-manifold. Can we connect any two points on M by horizontal curves?

Theorem (W.-L. Chow 1939, P.-K. Rashevskii 1938)
Any two points on a connected SR-manifold can be connected by piecewise smooth horizontal curves.

Consequence: The cc-distance $d_{c c}{ }^{2}$ on a connected SR-manifold is finite. Hence $\left(M, d_{c c}\right)$ forms a metric space.

[^0]Geodesic equations

Some question:

- How can we obtain Sub-Riemannian geodesics?
- Relation to $d_{c c}$: can we realize the cc-distance between two point by a (piecewise) smooth SR geodesic?
- Is the distance $x \mapsto d_{c c}\left(x_{0}, x\right)$ smooth for fixed points x_{0} ?

Let $(M, \mathcal{H},\langle\cdot, \cdot\rangle)$ be a SR-manifold. Let

$$
\left[X_{1}, \cdots, X_{m}\right]=\text { vector fields and } \quad m=\operatorname{rank} \mathcal{H} .
$$

an local orthonormal frame around a point $q \in M$, i.e.

$$
\mathcal{H}_{q}=\operatorname{span}\left\{X_{1}(q), \cdots, X_{m}(q)\right\} \quad \text { and } \quad\left\langle X_{i}(q), X_{j}(q)\right\rangle=\delta_{i j}
$$

Idea: Expand locally the derivative of a horizontal curve with respect to the above frame

SR-geodesics and optimal control

Observation

Let $\gamma:[0,1] \rightarrow M$ be horizontal. With suitable coefficients $u_{i}(t)$ one can write

$$
\gamma^{\prime}(t)=\sum_{j=1}^{m} u_{j}(t) \cdot X_{j}(t) \quad \Longrightarrow \quad\left\langle\gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle=\sum_{j=1}^{m} u_{i}^{2}(t)
$$

Finding SR-geodesics between $A, B \in M=$ optimal control problem OCP. OCP: Minimize the cost

$$
J_{T}(u):=\frac{1}{2} \int_{0}^{T} \sqrt{\sum_{j=1}^{m} u_{i}^{2}(t)} d t
$$

under the conditions

$$
\gamma^{\prime}=\sum_{j=1}^{m} u_{j} \cdot X_{j}(\gamma) \quad \text { and } \quad \gamma(0)=A, \gamma(T)=B
$$

SR-geodesic: a Hamiltonian formalism

Remark:

Instead of minimizing a lenght we may equivalently minimize an "energy":
OCP: Minimize the cost

$$
J_{T}(u):=\frac{1}{2} \int_{0}^{T} \sum_{j=1}^{m} u_{i}^{2}(t) d t
$$

under the conditions

$$
\gamma^{\prime}=\sum_{j=1}^{m} u_{j} \cdot X_{j}(\gamma) \quad \text { and } \quad \gamma(0)=A, \gamma(T)=B
$$

Hamiltonian formalism (as known in Riemannian geometry):
Assign a Sub-Riemannian Hamiltonian $H_{\text {sr }} \in C^{\infty}\left(T^{*} M\right)$ to the problem:

$$
H_{\mathrm{sr}}(q, p)=\sum_{j=1}^{m} p\left(X_{j}(q)\right)^{2} \quad \text { where } \quad(q, p) \in T_{q}^{*} M
$$

SR-geodesic: a Hamiltonian formalism

With the Poisson bracket $\{\cdot, \cdot\}$ on $C^{\infty}\left(T^{*} M\right)$ consider:

$$
\vec{H}_{\mathrm{sr}}=\{\cdot, H\}=\frac{\partial H}{\partial p} \cdot \frac{\partial}{\partial q}-\frac{\partial H}{\partial q} \cdot \frac{\partial}{\partial p}=\text { Hamiltonian vector field }
$$

The Hamiltonian vector field defines the geodesic flow on $T^{*} M$ and projections of the flow to M give $S R$-geodesics:

Theorem (normal geodesics)

Let $\zeta(t)=(\gamma(t), p(t))$ be a solution to the normal geodesic equations:

$$
\dot{q}=\frac{\partial H}{\partial p_{i}}(q, p) \quad \text { and } \quad \dot{p}=-\frac{\partial H}{\partial q_{i}}(q, p), \quad i=1 \cdots \operatorname{dim} M .
$$

Then $\gamma(t)$ locally minimizes the $S R$-distance.

Proof: ${ }^{3}$

${ }^{3}$ R. Montgomery, A tour of Subriemannian Geometries, Their Geodesics and Applications Math. Surveys and Monographs, 2002.

SR-geodesics

Remark

There are various differences to the setting of a Riemannian manifold:

- The Hamiltonian in Riemannian geometry can be expressed as

$$
H_{r}(q, p)=\sum_{i, j=1}^{n} g^{i j}(q) p_{i} p_{j}, \quad g^{i j}:=\text { inverse metric tensor. }
$$

In SR-geometry $g_{i j}$ is an $m \times m$-matrix and not invertible on TM.

- There are no 2 nd order geodesic equations in the SR-setting such as

$$
\ddot{q}^{k}=\Gamma_{i j}^{k} \dot{q}_{i} \dot{q}_{j} .
$$

The obtained regularity of SR-geodesics is not clear.

- In SR-geometry there may be singular geodesics which do not solve the geodesic equations in the above theorem.

The falling cat:
A connectivity problem in SR geometry

Generalizations of the Heisenberg group

A Lie group G has trivial tangent bundle and the last construction of a trivial bundle can be generalized:

Left-invariant structure

- Let \mathfrak{g} denote the Lie algebra of G.
- Let $V \subset \mathfrak{g}$ be a subspace of \mathfrak{g} with inner product $\langle\cdot, \cdot\rangle_{V}$ and

$$
\mathfrak{g}=\operatorname{Lie}(V)=\operatorname{span}\{v,[w, x],[y,[w, x]], \cdots: x, y, w \in V\} .
$$

Identify V (via left-translation) with a space of left-invariant vector fields on G.

- The G becomes a sub-Riemannian manifold $(G, \mathcal{H},\langle\cdot, \cdot\rangle)$ with:

$$
\begin{aligned}
\mathcal{H} & =V \\
\langle\cdot, \cdot\rangle_{q} & =\left\langle\left(d L_{q}\right)^{-1} \cdot,\left(d L_{q}\right)^{-1} \cdot\right\rangle_{V}
\end{aligned}
$$

Contact structures

Let Θ be a one-form on a manifold M of dimension $\operatorname{dim} M=2 k+1$. Put:

$$
\mathcal{H}_{q}:=\operatorname{kern}\left(\Theta_{q}\right) \subset T_{q} M, \quad(q \in M)
$$

Contact form

Assume that Θ has the following properties:

- the restriction of $d \Theta_{q}$ to \mathcal{H}_{q} is non-degenerate ${ }^{a}$ for each $q \in M$:

$$
\text { If } v \in \mathcal{H} \text { with } d \Theta(v, w)=0 \text { for all } w \in \mathcal{H}_{q} \text {, then } v=0
$$

- equivalently: the form

$$
\omega:=\Theta \wedge(d \Theta)^{2 k} \neq 0
$$

does not vanish at any point of $M(=\omega$ is a volume form):

Contact manifolds

Lemma

Let Θ be a contact form on M. Then

$$
\mathcal{H}:=\operatorname{ker} \Theta \subset T M
$$

is a bracket generating distribution.
Proof: Use Cartan's formula:

$$
d \Theta(X, Y)=X \Theta(Y)-Y \Theta(X)-\Theta([X, Y])
$$

Let X, Y be horizontal, i.e. $X_{q}, Y_{q} \in \mathcal{H}_{q}=\operatorname{kern} \Theta_{q}$ for all $q \in M$. Then

$$
\Theta(X)=\Theta(Y)=0 \quad \Longrightarrow \quad d \Theta(X, Y)=-\Theta([X, Y])
$$

Since $d \Theta$ is non-degenerate on \mathcal{H}_{q} we find X, Y with

$$
[X, Y]_{q} \notin \operatorname{kern} \Theta_{q}=\mathcal{H}_{q}
$$

Contact manifolds (continued)

Choose an almost complex structure $J: \mathcal{H} \rightarrow \mathcal{H}$ such that

$$
\langle\cdot, \cdot\rangle=d \Theta(J \cdot, \cdot), \quad \text { and } \quad J^{2}=-1
$$

is an inner product on \mathcal{H} (symmetric, positive definite).

Definition (contact Sub-Riemannian manifold)

The tripel $(M, \mathcal{H},\langle\cdot, \cdot\rangle)$ is called contact Sub-Riemannian manifold.
Example: Consider again the Heisenberg group $\mathbb{H}_{3} \cong \mathbb{R}^{3}$ with distribution:

$$
\mathcal{H}=\operatorname{span}\left\{\frac{\partial}{\partial x}-\frac{y}{2} \frac{\partial}{\partial z}, \frac{\partial}{\partial y}+\frac{x}{2} \frac{\partial}{\partial z}\right\}=\operatorname{kern}(\underbrace{d z-\frac{x}{2} d y+\frac{y}{2} d x}_{=\Theta}) .
$$

Moreover, Θ is a contact form and \mathbb{H}_{3} is a contact SR-manifold:

$$
\Theta \wedge d \Theta=-\Theta \wedge(d x \wedge d y)=-d x \wedge d y \wedge d z \neq 0
$$

Rototranslation group: How to park a car?

Possible movements

- $X=\cos \vartheta \cdot \partial_{x}+\sin \vartheta \cdot \partial_{y}$,
(in direction of the car)
- $Y=\partial_{\vartheta}$,
- $Z=-\sin \vartheta \cdot \partial_{x}+\cos \vartheta \cdot \partial_{y}$, (rotation)
(orthogonal to the car).
Good choice:

$$
\mathcal{H}=\operatorname{span}\{X, Y\}=\operatorname{kern} \omega \quad \text { with } \omega=-\sin \vartheta \cdot d x+\cos \vartheta \cdot d y
$$

$\omega \wedge d \omega=\omega \wedge(-\cos \vartheta \cdot d \vartheta \wedge d x-\sin \vartheta \cdot d \vartheta \wedge d y)=-d x \wedge d y \wedge d \vartheta \neq 0$.

Sub-Riemannian structures on spheres

Different from a Lie group it is well-known that most of the Euclidean unit spheres $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$ of dimension n do not have a trivial tangent bundle.

Exceptions

Precisely the spheres \mathbb{S}^{n} where $n=1,3,7$ have trivial tangent bundle.
Questions: Are there:
(1) bracket generating distributions on Euclidean spheres?
(2) trivializable bracket generating distributions \mathcal{H} on \mathbb{S}^{n}, (i.e. \mathcal{H} is trivial as a vector bundle)?

Answers:

(1) There are various constructions:

- odd dimensional spheres $\mathbb{S}^{2 k+1} \subset \mathbb{R}^{2 n} \cong \mathbb{C}^{n}$ carry a contact structure (from the diagonal action of S^{1} on \mathbb{C}^{n}),
- via (quaternionic) Hopf fibration in some dimensions, ...
(2) In some dimensions via canonical vector fields.

SR-strucures on spheres

There are various constructions of SR-structures on Euclidean spheres. Some models arise from different points of view, e.g. \mathbb{S}^{3} or \mathbb{H}_{3} are:

Lie groups, total space of a fiber bundle (e.g. Hopf fibration), contact manifolds, ...
W. -B. K. Furutani, C. Iwasaki

Trivializable sub-Riemannian structures on spheres, Bull. Sci. math. 137 (2013), 361- 385.
O. Calin, D.-C. Chang,

Sub-Riemannian geometry on the sphere S^{3}, Canad. J. Math. 61 (4) (2009) 721-739.

呞 I. Markina, M.G. Molina,
Sub-Riemannian geodesics and heat operator on odd dimensional spheres, Anal. Math. Phys. 2 (2) (2012) 123-147

Adams Theorem

Theorem (J.F. Adams, 1962)

The maximal dimension $\gamma(n)$ of a trivial subbundle in $T \mathbb{S}^{n}$ is:

$$
\gamma(n)=2^{a}+8 b-1
$$

The numbers $0 \leq a<4$ and $0 \leq b$ are determined through the relations:

$$
n+1=2^{a+4 b} \times[\text { odd }]
$$

Canonical vector fields: For $\alpha=1, \cdots, \gamma(n)$ consider:

$$
X_{\alpha}:=\sum_{i=1}^{n+1} \sum_{j=1}^{n+1} a_{i j}^{\alpha} x_{i} \frac{\partial}{\partial x_{j}}, \quad \text { with } \quad A_{\alpha}=\left(a_{i j}^{\alpha}\right) \in \mathbb{R}(n+1)
$$

Assume that the matrices A_{α} fulfill the Clifford relations:

$$
A_{\alpha} A_{\beta}+A_{\beta} A_{\alpha}=-2 \delta_{\alpha \beta} I
$$

Sub-Riemannian structures via canonical vector fields

Lemma

The restriction of the canonical vector fields to \mathbb{S}^{n} are orthonormal at each point of \mathbb{S}^{n}. The distribution:

$$
\mathcal{H}=\operatorname{span}\left\{X_{\alpha}: \alpha=1, \cdots, \gamma(n)\right\}
$$

defines a maximal dimensional trivial subbundle of $T \mathbb{S}^{n}$.
The Clifford relations imply relations on the brackets of canonical vector fields. In particular, these show:

$$
\left[X_{\alpha}\left[X_{\beta}\left[X_{\gamma} \cdots\right]\right]\right] \in \operatorname{span}\left\{X_{i},\left[X_{j}, X_{k}\right]: i, j, k=1, \cdots, \gamma(n)\right\}
$$

Necessary condition for the bracket generating property:

$$
\begin{equation*}
\rho(n):=\gamma(n)+\binom{\gamma(n)}{2}>n . \tag{*}
\end{equation*}
$$

Trivializable Sub-Riemannian structures on sphere

Lemma Property (*) precisely holds in the following dimensions:

n	1	3	7	15	23	31	63
$\gamma(n)$	1	3	7	8	7	9	11
$\rho(n)$	1	6	28	36	28	45	66

Next task: Sufficient conditions for the bracket generating property.
Theorem, (B. Furutani, Iwasaki)
Trivializable Sub-Riemannian structures on spheres \mathbb{S}^{n} via a Clifford module structure only exist in the following dimensions:

$$
n=3,7,15
$$

On \mathbb{S}^{7} there are trivializable structures of rank $4,5,6$.
Question: Are there Subriemannian structures on exotic 7-spheres?

Gromoll-Meyer exotic 7 -sphere $\Sigma_{G M}^{7}$
Exotic 7 -sphere as base of a Δ-principal bundle

With $\Delta=\{(\lambda, \lambda): \lambda \in \operatorname{Sp}(1)\}$ und $G=\operatorname{Sp}(1) \times \operatorname{Sp}(1) \supset \Delta$.
Theorem (B., Furutani, Iwasaki, 2016)
The bi-quotient of compact groups induces a rank $4 S R$-structure on the Gromoll-Meyer exotic 7-sphere.
$T(S p(2))=V^{\Delta} \oplus H^{\Delta}=V^{G} \oplus H^{G}$ und $H^{G} \subset H^{\Delta}$.

Sub-Riemannian structures of bundle type

Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ be Riemannian manifolds with Riemannian submersion:

$$
\pi: M \rightarrow N
$$

Properties

Let $q \in M$ and $p=\pi(q) \in N$.

- kern $d \pi_{q} \subset T_{q} M$ is a the space tangent to the fibre $\pi^{-1}(p)$ at q.
- The restriction of the differential

$$
d \pi_{q}: \mathcal{H}_{q}:=\left(\operatorname{kern} d \pi_{q}\right)^{\perp} \subset T_{q} M \rightarrow T_{p} N
$$

is an isometry.

- On \mathcal{H} consider the restriction $\langle\cdot, \cdot\rangle$ of the metric on TM

These data may give a SR-structure of bundle type. (Note: bracket generating property is not clear in general and has to be checked).

Example: Hopf fibration

Consider the three sphere as a subset of \mathbb{C}^{2} :

$$
\mathbb{S}^{3}=\left\{z=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\} \subset \mathbb{C}^{2}
$$

Definition (Hopf fibration)

The Hopf fibration is the submersion map

$$
\pi: \mathbb{S}^{3} \rightarrow \mathbb{S}_{\frac{1}{2}}^{2}: \pi(z):=\frac{1}{2}\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}, \operatorname{Re}\left(z_{1} \bar{z}_{2}\right), \operatorname{lm}\left(z_{1} \bar{z}_{2}\right)\right)
$$

where $\mathbb{S}_{\frac{1}{2}}^{2}$ is the 2 -sphere of radius $1 / 2$.
Theorem: The Hopf fibration defines a principal \mathbb{S}^{1}-bundle, where \mathbb{S}^{1} act by componentewise multiplication on $\mathbb{S}^{3} \subset \mathbb{C}^{2}$.
Remark: The corresponding distribution on \mathbb{S}^{3} of bundle type is bracket generating (and coincides with a contact structure on \mathbb{S}^{3}).

Summary

- Sub-Riemannian geometry models motion under non-holonomic constraints (mechanical systems, rolling of manifolds, parking a car, falling cat...)
- Connected SR-manifolds are metric spaces with the cc-distance.
- Sub-Riemannian geodesics \longleftrightarrow optimal control problem.
- Examples include: some Lie groups, (e.g. Heisenberg group or \mathbb{S}^{3}), Euclidean spheres, some principal bundles (e.g. Hopf fibration).

References

W．Bauer，K．Furutani，C．Iwasaki，
A codimension 3sub－Riemannian structure on the Gromoll？Meyer exotic sphere，Differential geometry and its applications， 53 （2017）， 114－136．
國 W．－B．K．Furutani，C．Iwasaki
Trivializable sub－Riemannian structures on spheres，Bull．Sci．math． 137 （2013），361－ 385.

目 O．Calin，D．－C．Chang
Sub－Riemannian Geometry－General Theory and Examples， Cambridge University Press， 2009.

A．Bellaiche
Sub－Riemannian geometry，Basel－Boston－Berlin， 1996.
目 M．Gromov，
Carnot－Carathéodor spaces seen from within，Sub－Riemannian
Geometry，Birkhäuser，Progress in Math．144，（1996），79－323．

References

I．Markina，M．G．Molina，
Sub－Riemannian geodesics and heat operator on odd dimensional spheres，Anal．Math．Phys． 2 （2）（2012）123－147

I．Markina，
Geodesics in geometry with constraints and applications．Quantization， PDEs，and geometry，153－314，in：Oper．Theory Adv．Appl．，251， Adv．Partial Differ．Equ．（Basel），Birkhäuser／Springer，Cham， 2016.

R．Montgomery，
A tour of Subriemannian Geometries，Their Geodesics and Applications，Mathematical Surveys and Monographs，91， 2002.

Thank you for your attention!

[^0]: ${ }^{2}$ Carnot-Carathéodory distance

