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Motivation: Sub-Riemannian geometry
Consider n classical particles with coordinates {ql, e ,q,,}.

Motion under constraints
H: f(g1, -+ ,qn) =0, (holonomic),
NH: f(q1,--,qn, 1, - ,qn) = 0, (non-holonomic).

Exampels:
H: A particle moving along a surface, or a pendulum.

NH: Rolling of a ball on a plane (or some surface) without slipping or
twisting.

Corresponding geometric structures on a manifold

@ holonomic constraints — integrable distribution (foliation of a
manifold),

@ non-holonomic constraints — Sub-Riemannian structure.
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Parking a car: Rototranslation

Position of the car robot in 3-space: (x,y,9) € R? x S,

Possible movements
@ X =cos? -0y +sind -0y, (in direction of the car)
e Y =0y, (rotation)
@ Z = —sind:0x+cosv- 0y, (orthogonal to the car).J
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Parkin a car: Rototranslation

Connecting positions: Which movements allow to reach from any
position of the car any other position?

Observations
@ Moving only along X and Z is not enough: it keeps the angle 1 fixed.

span{X, Z} = kerndv and  dv = closed form,
[X, Z] = 0.

@ Moving along X and Y (parking procedure) might be sufficient for
connecting positions.

span{X, Y} = kernw  where w = —sinvdx + cosvdy.

[X, Y] = [cosz? - Ox +sind - (‘9},,&9}

= —sinv - Ox +cos? - 0, = Z.
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Sub-Riemannian Geometry

"Sub-Riemannian geometry models motions under
non-holonomic constraints”.

Definition
A Sub-Riemannian manifold (shortly: SR-m) is a triple (M, H, (-, -)) with:

@ M is a smooth manifold (without boundary), dim M > 3 and
H C TM is a vector distribution.

@ 7H is bracket generating of rank kK < dim M, i.e.

LiexH = T M.

@ (-,+)x is a smoothly varying family of inner products on H, for x € M.

v
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1.Example: Heisenberg group
Consider the 3- dimensional Heisenberg group Hs = (R3, %) with product:

1
(X1,Y1721) * (Xz,)/2722) = <X1 T X2, Y1+ Y2,21 + 22 + §[X1Y2 — )/1X2]>-

Lie algebra of Hs:

On H; =2 R3 define left-invariant vector fields: Let g = (x,y, z) € Hs: !

xir](a) = 5 (9 (£0.0))

Similarly, with curves (0,t,0): and (0,0, t);:

0 x 0 and Z:2

Xp= 2 X9 |
2= 3, " 202 BE

1" X left-invariant”: Xg.n = (Lg)«Xp with the left-multiplication L, : Hs — H.
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Heisenberg group as SR-manifold

Known fact:

The Lie algebra (b3, [-,]) of H3 can be identified with:

bhs = span{Xl, Xo, Z} with  [-,-] = commtator of vector fields.

Observation

If we calculate Lie-brackets [-, -], then one only finds one non-trivial
bracket relation is:

(X1, Xo] = X1 X0 — Xo Xy = Z.

@ Put H = span{Xi, Xo} C THj3 (distribution),

@ Define (-,-) on H by declaring X7 and X5 pointwise orthonormal.
Conclusion: (Hiz, #, (-, -)) defines a Sub-Riemannian structure on Hs.
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Horizontal curves and cc-distance:

On a SR-manifold (M, H, (-,-)) we consider horizontal objects, i.e. objects
under non-holonomic constraints.

Example
Consider a curve v : [0,1] — M: @

@ ~ is called horizontal, (a.e.) it is tangential to H, i.e.

(t) € %W(t)'

@ The curve length is defined by:

1
() i= | G e

@ SR geodesic = locally length minimizing horizontale curve.

“piecewise C! or just absolutely continuous

v
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Carnot-Carathéodory metric

Definition: Sub-Riemannian distanced (cc-distance)
The SR distance between two points a, b € M is defined by:

dec(a, b) := inf {6(7) . 7 horizontal ,v(0) = a,v(1) = b}.

Question: Let M be a connected SR-manifold. Can we connect any two
points on M by horizontal curves?

Theorem (W.-L. Chow 1939, P.-K. Rashevskii 1938)

Any two points on a connected SR-manifold can be connected by
piecewise smooth horizontal curves.

Consequence: The cc-distance d.. 2 on a connected SR-manifold is
finite. Hence (M, d..) forms a metric space.

2Carnot-Carathéodory distance
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Geodesic equations

Some question:
@ How can we obtain Sub-Riemannian geodesics?

@ Relation to d..: can we realize the cc-distance between two point by
a (piecewise) smooth SR geodesic?

@ Is the distance x > d.-(xp, x) smooth for fixed points xg?

Let (M, #,(-,-)) be a SR-manifold. Let
[Xl, e ,Xm] = vector fields and m = rank H.

an local orthonormal frame around a point g € M, i.e.

Hq:span{Xl(q),--- ,xm(q)} and  (Xi(q), Xi(q)) = 6;.

Idea: Expand locally the derivative of a horizontal curve with respect to
the above frame
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SR-geodesics and optimal control

Observation

Let v : [0,1] — M be horizontal. With suitable coefficients u;(t) one can
write

Finding SR-geodesics between A, B € M= optimal control problem OCP.
OCP: Minimize the cost

under the conditions

’Y/:ZUJ'XJ(’Y) and  ~(0) = A, v(T) =B.
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SR-geodesic: a Hamiltonian formalism

Remark:
Instead of minimizing a lenght we may equivalently minimize an "energy”:

OCP: Minimize the cost

T m
Jr(u) ::%/O > (e)de

under the conditions

V' => ui-Xj(7) and  4(0)=A, A(T)=B.
j=1

Hamiltonian formalism (as known in Riemannian geometry):

Assign a Sub-Riemannian Hamiltonian Hs, € C°°(T*M) to the problem:

Hsr(q,p)=zp(xj(q))2 where  (q,p) € Ty M.

j=1
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SR-geodesic: a Hamiltonian formalism
With the Poisson bracket {-, -} on C*(T*M) consider:

> OH 0 OH 0
Hy={ HY=2"".2 0% _ Hamiltoni tor field
S { } 8,0 8(] aq ap amiitonian vector frie

The Hamiltonian vector field defines the geodesic flow on T*M and
projections of the flow to M give SR-geodesics:

Theorem (normal geodesics)
Let ¢(t) = (y(t), p(t)) be a solution to the normal geodesic equations:

ol OH
g=50@p) and  p=-SD(a.p) i=1dmm.
Then ~(t) locally minimizes the SR-distance.
Proof: 3

*R. Montgomery, A tour of Subriemannian Geometries, Their Geodesics and
Applications Math. Surveys and Monographs, 2002.
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SR-geodesics

Remark
There are various differences to the setting of a Riemannian manifold:

@ The Hamiltonian in Riemannian geometry can be expressed as

n
H.(q,p) = Z gij(q)Pin, g’ := inverse metric tensor.
ij=1

In SR-geometry gj; is an m x m-matrix and not invertible on TM.

@ There are no 2nd order geodesic equations in the SR-setting such as
G = 4.

The obtained regularity of SR-geodesics is not clear.

@ In SR-geometry there may be singular geodesics which do not solve
the geodesic equations in the above theorem.
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problem
in SR geometry

& The falling cat:
A connectivity
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Generalizations of the Heisenberg group

A Lie group G has trivial tangent bundle and the last construction of a
trivial bundle can be generalized:

Left-invariant structure
@ Let g denote the Lie algebra of G.

@ Let V C g be a subspace of g with inner product (-,-)y and
g= L|e(V) — Span{V7 [W7X]7 [yv [W,XH,' Xy, W e V}

|dentify V' (via left-translation) with a space of left-invariant vector
fields on G.

@ The G becomes a sub-Riemannian manifold (G, #, (-, -)) with:

H=V
<°7 '>q — <(qu)_1'7 (qu)_1'>V'
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Contact structures
Let © be a one-form on a manifold M of dimension dim M = 2k + 1. Put:

Hq = kern(©4) C TyM, (g e M).

Contact form
Assume that © has the following properties:

@ the restriction of d©, to H, is non-degenerate ¢ for each g € M:

If v.e H with dO(v,w) =0 for all w € Hg, then v = 0.

@ equivalently: the form
w:=O A (d8)* £0

does not vanish at any point of M (= w is a volume form):

?a symplectic form
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Contact manifolds

Lemma
Let © be a contact form on M. Then

H:=ker® C TM

Is a bracket generating distribution.

Proof: Use Cartan's formula:
dO(X,Y)=XO(Y) - YO(X)—-0O(X,Y].
Let X, Y be horizontal, i.e. Xg, Yq € Hg = kern ©4 for all g € M. Then
O(X)=0(Y)=0 = doO(X,Y)=-0(X,Y]).
Since d© is non-degenerate on H, we find X, Y with
[X,Y]q & kern©4 = H,.
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Contact manifolds (continued)
Choose an almost complex structure J : H — H such that

() =dO(J,-), and S =-I

is an inner product on H (symmetric, positive definite).

Definition (contact Sub-Riemannian manifold)
The tripel (M, H, (-, -)) is called contact Sub-Riemannian manifold. J

Example: Consider again the Heisenberg group Hs =2 R3 with distribution:

B g y9d 9 x09\ X y
H—Span{a—ag,a—y—i—ig}—kern<dZ 2dy—|—2d)i>

=0

A

Moreover, © is a contact form and [Hj3 is a contact SR-manifold:
OANdO =-0OA (dx/\dy) = —dx ANdy Ndz # 0.
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Rototranslation group: How to park a car?

Possible movements

@ X =cost-0x+sinv -9, (in direction of the car)
@ Y = 0Oy, (rotation)
@ Z=—sind-0x+ cost- 0y, (orthogonal to the car).

Good choice:

H = span{X7 Y} = kernw with w = —sin¥ - dx + cosv - dy.

w/\dw:w/\(—cosﬁ-dﬁ/\dx—sinﬂ-dﬁ/\dy) = —dxAdy ANd¥ # 0.
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Sub-Riemannian structures on spheres

Different from a Lie group it is well-known that most of the Euclidean unit
spheres S” C R"! of dimension n do not have a trivial tangent bundle.

Exceptions
Precisely the spheres S” where n = 1,3, 7 have trivial tangent bundle. J

Questions: Are there:
(1) bracket generating distributions on Euclidean spheres?

(2) trivializable bracket generating distributions # on S”,
(i.e. H is trivial as a vector bundle)?
Answers:

(1) There are various constructions:

» odd dimensional spheres S?**1 ¢ R?" =2 C" carry a contact structure
(from the diagonal action of St on C"),
» via (quaternionic) Hopf fibration in some dimensions, - -

(2) In some dimensions via canonical vector fields.
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SR-strucures on spheres

There are various constructions of SR-structures on Euclidean spheres.
Some models arise from different points of view, e.g. S® or Hj are:

Lie groups, total space of a fiber bundle (e.g. Hopf fibration),
contact manifolds, - - -

[ W.-B. K. Furutani, C. lwasaki

Trivializable sub-Riemannian structures on spheres, Bull. Sci. math. 137
(2013), 361- 385.

@ O. Calin, D.-C. Chang,

Sub-Riemannian geometry on the sphere S3, Canad. J. Math. 61 (4) (2009)
721 - 7309.

[5] 1. Markina, M.G. Molina,

Sub-Riemannian geodesics and heat operator on odd dimensional spheres,
Anal. Math. Phys. 2 (2) (2012) 123 - 147
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Adams Theorem
Theorem (J.F. Adams, 1962)

The maximal dimension ~(n) of a trivial subbundle in TS" is:
v(n) =27 +8b—1.

The numbers 0 < a < 4 and 0 < b are determined through the relations:

n+1 =230 [odd].

Canonical vector fields: For « =1, --- ,y(n) consider:
n+1 n+1 9
Xo = z; z; azfx,-a—xj, with A, = (aj) € R(n+1).
=1 j=

Assume that the matrices A, fulfill the Clifford relations:

AaAg -+ AﬁAa = —25aﬁl.

W. Bauer (Leibniz U. Hannover ) Subriemannian geometry March 4-10. 2018 24 / 33



Sub-Riemannian structures via canonical vector fields

Lemma
The restriction of the canonical vector fields to S" are orthonormal at each
point of S". The distribution:

H = span{Xa ra=1,--- ,fy(n)}

defines a maximal dimensional trivial subbundle of TS".

The Clifford relations imply relations on the brackets of canonical vector
fields. In particular, these show:

[Xa[Xs[X, -+ 11] € span{ X, [X. X + isjk =1, ,3(n) |.
Necessary condition for the bracket generating property:
~v(n
()=o) + () > ()
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Trivializable Sub-Riemannian structures on sphere

Lemma Property (x) precisely holds in the following dimensions:

n 1 [ 3] 7 [ 15 ] 23 [ 31 | 63
~(n) 1 [ 3| 7 | 8 7 | 9 |11
o(n) 16| 28 | 36 | 28 | 45 | 66

Next task: Sufficient conditions for the bracket generating property.

Theorem, (B. Furutani, lwasaki)

Trivializable Sub-Riemannian structures on spheres S” via a Clifford
module structure only exist in the following dimensions:

n=3,7,15.

On S’ there are trivializable structures of rank 4,5, 6.

Question: Are there Subriemannian structures on exotic 7-spheres?
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Gromoll-Meyer exotic 7-sphere L7,

Exotic 7-sphere as base of a A-principal bundle

S* =5p(2)/G Sp(2)/A = Xy
With A = {(\,A) - A€ Sp(1)} und G = Sp(1) x Sp(1) D A,
Theorem (B., Furutani, Iwasaki, 2016)

The bi-quotient of compact groups induces a rank 4 SR-structure on the
Gromoll-Meyer exotic 7-sphere.

T(Sp(2)) = VA® HA = VC @ H® und H® C HA.
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Sub-Riemannian structures of bundle type

Let (M, gn) and (N, gn) be Riemannian manifolds with Riemannian
submersion:

m: M — N.

Properties
Let g € M and p = 7(q) € N.
o kern dm, C T,M is a the space tangent to the fibre 7~ *(p) at g.

@ The restriction of the differential
drg : Hg = (kern dmg)™ C TyM — T,N

is an isometry.

@ On 7 consider the restriction (-, -) of the metric on TM

These data may give a SR-structure of bundle type. (Note: bracket
generating property is not clear in general and has to be checked).
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Example: Hopf fibration

Consider the three sphere as a subset of C?:

S3 = {Z = (21,22) c CQ : |Zl|2 -+ |ZQ|2 = 1} C (C2.

Definition (Hopf fibration)

The Hopf fibration is the submersion map

1
mi 88 in(z) = 5(\21\2 2|2, Re(z122), |m(21?2)),

where S? is the 2-sphere of radius 1/2.

2

Theorem: The Hopf fibration defines a principal S*-bundle, where S act
by componentewise multiplication on S* C C?.

Remark: The corresponding distribution on S of bundle type is bracket
generating (and coincides with a contact structure on S3).
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Summary

@ Sub-Riemannian geometry models motion under non-holonomic
constraints (mechanical systems, rolling of manifolds, parking a car,
falling cat-- )

@ Connected SR-manifolds are metric spaces with the cc-distance.
@ Sub-Riemannian geodesics «+— optimal control problem.

e Examples include: some Lie groups, (e.g. Heisenberg group or S°),
Euclidean spheres, some principal bundles (e.g. Hopf fibration).
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Thank you for your attention!
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