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Intrinsic Sub-Laplacian (Reminder from the 2nd talk)

Let (M, H, (-,-)) be a regular SR-manifold with Popp measure P.

Definition
The intrinsic Sub-Laplacian on M is the Sub-Laplacian associated to P:

Agyp = divp o grad 4

where (with the Lie derivative Lx)

LxP =divp(X)-P and grad,, = horizontal gradient.

Here: P= Popp measure and

<gradH(gp), v> =dy(v), veEH, (horizontal gradient).
S—— q
Mg
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The Sub-Laplacian on nilpotent Lie groups

Carnot group

A Carnot group is a connected, simply connected Lie group G, with Lie
algebra g allowing a stratification

g=Vi®- -V,
Moreover, the following bracket relations respecting the stratification hold:

[Vla\/j]:\/j-i-l) j:17"'7r_17
[\/_javr]:{o}a .j:]-)"'ar'

In particular g is nilpotent of step r.

Example: Let hh3 be the Heisenberg Lie algebra. Then
bz =span{X, Y} @span{Z},

where [X, Y| = Z. This is a 2-step case.
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Two classical results

Theorem (Lie's third theorem) J

Every finite dimensional real Lie algebra is the Lie algebra of a Lie group.

Recall that a Lie group homomorphism is a smooth group isomorphism
between Lie groups.

Theorem
Let G and H be Lie groups with Lie algebras g and ), respectively. Let

d:g—bh

denote a Lie algebra homomorphism. If G is simply connected, then there
Is a unique Lie group homomorphism

f:G—H

such that ® = df (the differential of f).

v
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Carnot group

A combination of the last theorem gives:

Corollary

For every finite dimensional Lie algebra g over R there is a simply
connected Lie group G which has g as Lie algebra. Moreover, G is unique
up to isomorphisms.

This leads to the notion of Carnot group.

Definition
Let g be a Carnot Lie algebra. The connected, simply connected Lie group
G (up to isomorphisms) with Lie algebra g is called Carnot group.

Remark: If g has step r, we call the Carnot group G of step r.
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Example: Engel group

Consider the Engel group & = R* as a matrix group:

Ey = X, y,w,z € R » C R¥4,

o~ X NX,

z
w
y
1

O O O -
O O R X

Then &4 has the Lie algebra ¢4 with non-trivial bracket relations:
[X,Y] =W und [X,[X,Y]]:Z
N——
=W
and stratification

eq = span{X, Y} P span{W} o span{Z}.

Corollary
The Engel group &, is a Carnot group of step 3. J
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Nilpotent approximation

Let (M, #,(-,-)) be a regular Sub-Riemannian manifold.
Consider again the flag induced by the bracket generating distribution .

H=H'CH*C---CH cH T c- -
Notation: By definition dim #, for all r are independent of g € M, where:

H - = H = "sheave of smooth horizontal vector fields”,

H =H + [HH],

with

1 H], = span{ [X, Y]+ Xp € Hpy and Yy € Hy .
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Nilpotent approximation
For each g € M we obtain a graded vector space:

gr(H)g =Hq®Ho/Hq® - ®Hp/HL"
= nilpotentization.

Observations:
@ Lie brackets of vector fields on M induce a Lie algebra structure
on gr(#)q. (respecting the grading).
o Let Gr(7)q denote the connected, simply connected nilpotent
Lie group with Lie algebra gr(H),.
@ The space #H, C gr(#)q induces for each g € M a (left-invariant)
SR-structure on the group Gr(H)q (Example of talk 1).

Definition
The group Gr(# )4 with the induced SR-structure is called nilpotent
approximation @ of the SR-structure M at g € M.

It plays the role of a tangent space in Riemannian geometry

v
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Nilpotent approximation

Conclusion:

Carnot groups seem to be a good local model of the SR-manifold. It may
be helpful to understand the Sub-Laplacian and sub-elliptic heat flow on
such groups.

Question

What is the intrinsic Sub-Laplacian on a Carnot group or (more generally)
on any nilpotent Lie group?

Exponential coordinates: Let (G, *) be a connected, simply connected
nilpotent Lie group of dimension dim G = n and with Lie algebra g. Then

exp:g— G

is a diffeomorphism. Hence we can pullback the product on G to g = R”
via exp (exponential coordinates).
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Exponential coordinates
We have an identification:

where

g o h:=log (exp(g) * exp(h)), forall g,heg.

Baker-Campbell-Hausdorff formula
Let g, h € g, then

exp(g) * exp(h) =

:exp<g—|—h—|—%[g,h]+i[g,[g,h]] _%[hv[gvh” :F)

12

Note: if g is nilpotent, then the sum in the exponent is always finite.

v
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Exponential coordinates
Using this formula above gives:

11/ 32

goh=g+h+ %[g, h] + 1—12[g, [g,h]] — i[h, g, hH F - - - (finite).

12

Example

Consider the case r = step g = 2 and choose a decomposition
g=Vi & V2

such that
[\/1, V1] = \/2 and [Vl, V2] = [\/2, V2] = 0.

Consider the SR-structure on g = G defined by:

H = Vi = "left-invariant vector fields.”
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Sub-Laplacian on nilpotent Lie groups

Example (continued)

Consider an inner product (-, -) on V4 and chose an orthonormal basis:

[X1,- -+, Xm] = "orthonormal basis of V1".
Chose a basis [Yn11, -+, Yn] of Vo. Then there are structure constants
cg such that

(X, Xil= ) ciYe, [Xi,Yi=0=[Y, Y
f=m-+1

This choice of basis gives a concrete identification g = R".

Goal: Calculate the left-invariant vector fields corresponding to the basis
elements X;.
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Sub-Laplacian on nilpotent Lie groups

Example (continued)
Let f € C*°(R") and g = > " x;X; € g. Then

X:f](g) = %f(g . tx,-)’tzo
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Sub-Laplacian on nilpotent Lie groups

Example (continued)
We can identify X; € V; C g with the following left-invariant vector field

on G = R":
= a 1 n 1 Y/ 8
Xi= g~ 32 2. Mg,
! j=1 f=m+1

Observations:
@ the coefficients in front of % isonefori=1,---.,m,

@ in the double sum the variable x; does not appear (c: = 0 for all /).
Let P = Lebesgue measure be the Popp measure on G = R".
Goal: Calculate the P-divergence of X; for i = 1,--- ,m:

From the above observations:

[’>~<; <dx1 AN ANdXm Adymer Ao+ A dyn_m) =dowgP = d<73()~<,-, )) -0

Therefore divp(Xj) =0 forall i=1,--- m.
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Sub-elliptic heat equation

W. Bauer (Leibniz U. Hannover )

Sub-Laplacian on nilpotent Lie groups

Example (continued)
Conclusion: In the above example of a step-2 nilpotent Lie group we have

1 [Xz—l—dlvw } ZXz
= =0

found:

Ma

sub —

Hence, the intrinsic sub-Laplacian has no first order terms. We say:

Ag,p = sum of squares operator.
v

W. Bauer (Leibniz U. Hannover ) Sub-elliptic heat equation March 4-10. 2018 16 / 32



A more general statement

Let G be a Lie group of dimension dim G = n. Then on G we have two
types of Haar measures. A

@ left-invariant n-form p, (left-Haar measure) i.e.

/ f(a* g)ule) =/ f(g)u(g), VaeG, vfell(G),
G G

@ right-invariant n-form pg, (right-Haar measure) i.e.

[ (& + unte) = [ Feale). a6, vreL(G)
G G

Definition J

The group G is called unimodular if 1y and g are proportional.

Example: Let G be a nilpotent Lie group or G = SL(2) or G = SO(3).
March 4-10. 2018 17 / 32

Proposition (A. Agrachev, U. Boscain, J.-P. Gauthier, F. Rossi, 2009)

Let (G, H,(-,-)) be a left-invariant sub-Riemannian structure on a
unimodular group G.

Then the intrinsic sub-Laplacian A, is a sum of squares of vector fields
(i.e. it has no first order term).

Next Goal: What are the analytic properties of Ag,,? What can be said
about the subelliptic heat flow?

Let (M, H,(-,-)) be a regular SR-manifold. Consider a local orthonormal
frame for H

(X1, , Xm] with m<n=dmM.

Seen before: The intrinsic sub-Laplacian A, can be expressed in the

form:
m

Do =3 {x,? + dive (X)X
i=1
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Hypoellipticity

Theorem (L. Hormander, 1967)
Let 2 C R" be open. Consider C*°- vector fields [Xo,- - , Xmm| with

rank Lie[Xo, oo ,Xm} =n, x € (Hérmander condition).

The differential operator L is hypoelliptic:

L:=) XP+Xo+c ceC™(Q)
j=1
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Remarks

@ An operator P is called hypoelliptic if

Pu=f with f,ueD(Q)

implies: Let Qg T Qand f € C>(€p), then u € C*(£2p).

@ The hypoellipticity statement in the Hormander's Theorem follows via
sub-elliptic estimates:
lulls—s < Co(llAulls + [[ulle),  ue o (D)

bounded domain

e elliptic operators (e.g. the Laplace operator on a Riemannian
manifold) are hypoelliptic (elliptic regularity).
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Hormander theorem: the version on manifolds

Theorem (L. Hormander, 1967)

Let L be a differential operator on a manifold M, that locally in a
neighborhood U of any point is written as

m
L = ZX’2 —I—Xo,
i=1

where Xo, X1, -+ , X, are C° - vector fields with
Lieq{Xo,Xl,--- ,Xm} —T,M ¥ qeU.
Then L is hypoelliptic. In particular:

The intrinsic sub-Laplacian on a SR-manifold M is hypoelliptic.
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Example: Kolmogorov operator

At the beginning of the 20th century:

A prototype of a kind of operator studied by A. N. Kolmogorov in relation
with diffusion phenomena is the following:

Example: Kolmogorov operator (proto-type)

n n
K:Z(())%J—i_szayj_at? mit (X7Y7 t) 6R2n+1
Jj=1 Jj=1

"sum of squares + a first order term.

x= velocity and y:=position.

Operator with non-negative degenerate characteristic form.
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Heat kernel of the Sub-Laplacian

Definition
The heat kernel of the sub-Laplacian Ag,p

K(t;x,y):(0,00) x M x M — R

is the fundamental solution of the heat operator:

p.— O

= E - Asuba

i.e. K(t;x,y) fulfills

PK(t;-,y) =0, forall t >0
limejo K(t;x,-) = dx, in the distributional sense.

Applications: Hypoelliptic diffusion and human vision. Image
reconstruction via non-isotropic diffusion. (Boscain, Citti, Sarti, - - -
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Remarks

We assume that M is complete as a metric space.

@ Based on the essentially selfadjointness of Ag,, on C2°(M) the
existence and uniqueness of the heat kernel is guaranteed. The details
are discussed in a paper by R. Strichartz. !

@ Hormander's theorem also implies the hypoellipticity of the heat

operator P := aﬁ — Aqyp. Since the heat kernel solves

t

PK(t;-,y)=20

and is symmetric in the space variables, it follows that K is a smooth
kernel on Ry x M x M.

'Robert S. Strichartz. Sub-Riemannian geometry. J. Differential Geom., 24(2):221 -
263, 1986.
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From analysis to geometry and back
Intuition: Let x,y € M (Riemannian manifold):

heat kernel = K(t; x,y) ="Heat flow from x to y at time t”

"Meta-Theorem”
The heat kernel of the Sub-Laplacian A, has the form of a path integral:

K(tix,y) = / e~ Mdpe(y).
Pt(Xay)

@ P:(x,y) = space of curves, connecting x and y.

@ Si(), classical action

S:(7) = 2 /0 5(s))ds.

® /it, a "measure” on P:(x,y).
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Example: heat asymptotic (it cse)

Let Xi,---,X, be vector fields on IR”, linear independent at each point
x € R". Consider

1 n
A= 5 Z ij + (lower order terms).
j=1

Heat kernel
The heat kernel of A has the following asymptotic behaviour as t | 0:

d(x, x") =Riemannian distance between x and x’, with x near x’.

1
1 _d(x,x")?

(27rt)§e T[ao(x,x’)—i— al(x,x’)t+...}_

K(t;x,x") =
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Example: Heat trace asymptotic ip. case

Let M be a compact Riemannian manifold with OM # 0

@ A the Laplace-Beltrami operator (zero Dirichiet boundary conditions).

@ 0(A)={0< A <Xy <---} the spectrum (=eigenvalues) Of A,
Then:

> —1 —2

Y eV nGt i+ Gtz +GtT 2 +---, (£10).
j=1

——

= heat trace

With geometric quantities:

scalar curvature

!
Co = , (4 = ————, and ngﬁ/ R(x)dx .
) M
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New effects: SR-geometry

Geometry:
@ end points of geodesics cannot be parametrized by initial velocities
(m < n).
@ Even locally there may be finitely many (> 1) or infinitely many
SR-geodesics between x,y € M.
@ There may be singular geodesics.
Analysis:
o Let xg € M be fixed. The map x + d2.(xg, x) is not smooth.

@ Even locally: the leading exponent in the asymptotic of the heat
kernel K(t,x,y) as t — 0 depends on the position of x and y

Example: SR-geodesic on the Heisenberg group Hs.
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New effects: asymptotic behavior of the heat kernel

K(t,x,y) : heat kernel (HK) of the Sub-Laplacian:

Theorem, (Léandre 1987)
The following asymptotic hold:

dsg = Carnot-Carathéodory metric
! 2
dsR (X7 y)

lim t log K (t; x,y) = —
lin og K(t; x,y) >

In case of a Riemannian manifold this relation is called Varadhan formula. J
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Heat asymptotic

The following improvements of the previous result are known:

Theorem, (Ben Arous 1989)

dimM dcc(X7Y)2

K(t:x,y) ~ t= 55 e % [ao(x,y)+0(ﬁ)], (t10)

if x # y and x is not in the cut-locus of y.

Theorem, (Ben Arous, Léandre 1991)
Asymptotic on the diagonal

K(t:xx) = C +t0§(\/?)

with @ = HausdorfF dimension of M.
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Spectral zeta functions

Another point of view is the analysis of the spectral zeta function of the
sub-Laplacian:

Spectral zeta function

Let A denote a non-negative operator with discrete spectrum
J(A)Z {OS)\l < Ao <)\3---},

where \; are eigenvalues of finite multiplicity m(\;). The spectral zeta
function of A is defined by:

CA(S) = Z @

NA£0

Question: In particular, let A = Ag,,. What can be said about relations
between geometric data and the meromorphic structure of (a_,,
(meromorphic extension, pole distribution, residues, singularities in s = 0)7?
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Next goal

"For a class of hypo-elliptic Hormander operators generalizing the
Kolmogorov operator study the small time heat kernel expansion ?and a
relation to a problem in control theory.”

2D. Barilari, E. Paoli, Curvature terms in small time heat kernel expansion for a model
class of hypoelliptic Hormander operators, Nonlinear analysis 164 (2017), 118-134.
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