
Sub-Laplacian and the heat equation

Winterschool in Geilo, Norway

Wolfram Bauer

Leibniz U. Hannover

March 4-10. 2018

W. Bauer (Leibniz U. Hannover ) Sub-elliptic heat equation March 4-10. 2018 1 / 32

Outline

1. Sub-Laplacian on nilpotent Lie groups

2. Nilpotent approximation

3. Sub-elliptic heat kernel asymptotic

W. Bauer (Leibniz U. Hannover ) Sub-elliptic heat equation March 4-10. 2018 2 / 32



Intrinsic Sub-Laplacian (Reminder from the 2nd talk)

Let (M,H, 〈·, ·〉) be a regular SR-manifold with Popp measure P.

Definition

The intrinsic Sub-Laplacian on M is the Sub-Laplacian associated to P:

∆sub = divP ◦ grad H

where (with the Lie derivative LX )

LXP = divP(X ) · P and gradH = horizontal gradient.

Here: P= Popp measure and〈
gradH(ϕ)︸ ︷︷ ︸
∈Hq

, v
〉
q

= dϕ(v), v ∈ Hq (horizontal gradient).
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The Sub-Laplacian on nilpotent Lie groups

Carnot group

A Carnot group is a connected, simply connected Lie group G , with Lie
algebra g allowing a stratification

g = V1 ⊕ · · · ⊕ Vr .

Moreover, the following bracket relations respecting the stratification hold:

[V1,Vj ] = Vj+1, j = 1, · · · , r − 1,

[Vj ,Vr ] = {0}, j = 1, · · · , r .

In particular g is nilpotent of step r .

Example: Let h3 be the Heisenberg Lie algebra. Then

h3 = span
{

X ,Y
}
⊕ span

{
Z
}
,

where [X ,Y ] = Z . This is a 2-step case.
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Two classical results

Theorem (Lie’s third theorem)

Every finite dimensional real Lie algebra is the Lie algebra of a Lie group.

Recall that a Lie group homomorphism is a smooth group isomorphism
between Lie groups.

Theorem

Let G and H be Lie groups with Lie algebras g and h, respectively. Let

Φ : g→ h

denote a Lie algebra homomorphism. If G is simply connected, then there
is a unique Lie group homomorphism

f : G → H

such that Φ = df (the differential of f ).
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Carnot group

A combination of the last theorem gives:

Corollary

For every finite dimensional Lie algebra g over R there is a simply
connected Lie group G which has g as Lie algebra. Moreover, G is unique
up to isomorphisms.

This leads to the notion of Carnot group.

Definition

Let g be a Carnot Lie algebra. The connected, simply connected Lie group
G (up to isomorphisms) with Lie algebra g is called Carnot group.

Remark: If g has step r , we call the Carnot group G of step r .
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Example: Engel group
Consider the Engel group E4

∼= R4 as a matrix group:

E4 =




1 x x2

2 z
0 1 x w
0 0 1 y
0 0 0 1

 : x , y ,w , z ∈ R

 ⊂ R4×4.

Then E4 has the Lie algebra e4 with non-trivial bracket relations:

[X ,Y ] = W und
[
X , [X ,Y ]︸ ︷︷ ︸

=W

]
= Z

and stratification

e4 = span
{

X ,Y
}
⊕ span

{
W
}
⊕ span

{
Z
}
.

Corollary

The Engel group E4 is a Carnot group of step 3.
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Nilpotent approximation

Let (M,H, 〈·, ·〉) be a regular Sub-Riemannian manifold.

Consider again the flag induced by the bracket generating distribution H.

H = H1 ⊂ H2 ⊂ · · · ⊂ Hr ⊂ Hr+1 ⊂ · · ·

Notation: By definition dimHr
q for all r are independent of q ∈ M, where:

H1 : = H = ”sheave of smooth horizontal vector fields”,

Hr+1 : = Hr +
[
Hr ,H

]
,

with [
Hr ,H

]
q

= span
{[

X ,Y
]
q

: Xp ∈ Hr
p and Yp ∈ Hp

}
.
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Nilpotent approximation
For each q ∈ M we obtain a graded vector space:

gr(H)q = Hq ⊕H2
q/Hq ⊕ · · · ⊕ Hr

q/Hr−1
q

= nilpotentization.

Observations:

Lie brackets of vector fields on M induce a Lie algebra structure
on gr(H)q. (respecting the grading).

Let Gr(H)q denote the connected, simply connected nilpotent
Lie group with Lie algebra gr(H)q.

The space Hq ⊂ gr(H)q induces for each q ∈ M a (left-invariant)
SR-structure on the group Gr(H)q (Example of talk 1).

Definition

The group Gr(H)q with the induced SR-structure is called nilpotent
approximation a of the SR-structure M at q ∈ M.

aIt plays the role of a tangent space in Riemannian geometry
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Nilpotent approximation

Conclusion:

Carnot groups seem to be a good local model of the SR-manifold. It may
be helpful to understand the Sub-Laplacian and sub-elliptic heat flow on
such groups.

Question

What is the intrinsic Sub-Laplacian on a Carnot group or (more generally)
on any nilpotent Lie group?

Exponential coordinates: Let (G , ∗) be a connected, simply connected
nilpotent Lie group of dimension dim G = n and with Lie algebra g. Then

exp : g→ G

is a diffeomorphism. Hence we can pullback the product on G to g ∼= Rn

via exp (exponential coordinates).
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Exponential coordinates
We have an identification:

(G , ∗) ∼= (g ∼= Rn, ◦),

where

g ◦ h := log
(

exp(g) ∗ exp(h)
)
, for all g , h ∈ g.

Baker-Campbell-Hausdorff formula

Let g , h ∈ g, then

exp(g) ∗ exp(h) =

= exp
(

g + h +
1

2
[g , h] +

1

12

[
g , [g , h]

]
− 1

12

[
h, [g , h]

]
∓ · · ·

)
Note: if g is nilpotent, then the sum in the exponent is always finite.
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Exponential coordinates
Using this formula above gives:

g ◦ h = g + h +
1

2
[g , h] +

1

12

[
g , [g , h]

]
− 1

12

[
h, [g , h]

]
∓ · · · (finite).

Example

Consider the case r = step g = 2 and choose a decomposition

g = V1 ⊕ V2

such that
[V1,V1] = V2 and [V1,V2] = [V2,V2] = 0.

Consider the SR-structure on g ∼= G defined by:

H = V1 = ”left-invariant vector fields.”
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Sub-Laplacian on nilpotent Lie groups

Example (continued)

Consider an inner product 〈·, ·〉 on V1 and chose an orthonormal basis:

[X1, · · · ,Xm] = ”orthonormal basis of V1”.

Chose a basis [Ym+1, · · · ,Yn] of V2. Then there are structure constants
ck
ij such that

[Xi ,Xj ] =
n∑

`=m+1

c`ijY`, [Xi ,Y`] = 0 = [Y`,Yh].

This choice of basis gives a concrete identification g ∼= Rn.

Goal: Calculate the left-invariant vector fields corresponding to the basis
elements Xi .
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Sub-Laplacian on nilpotent Lie groups

Example (continued)

Let f ∈ C∞(Rn) and g =
∑m

j=1 xjXj ∈ g. Then

[
Xi f
]
(g) =

d

dt
f
(

g ◦ tXi

)
|t=0

=
d

dt
f
(

g + tXi +
1

2

[
g , tXi

])
|t=0

=
d

dt
f
(

g + tXi +
t

2

m∑
j=1

xj
[
Xj ,Xi

])
|t=0

=
d

dt
f
(

g + tXi +
t

2

m∑
j=1

n∑
`=m+1

xjc
`
jiY`

)
|t=0

=

 ∂

∂xi
− 1

2

m∑
j=1

n∑
`=m+1

xjc
`
ij

∂

∂y`

 f (g).
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Sub-Laplacian on nilpotent Lie groups

Example (continued)

We can identify Xi ∈ V1 ⊂ g with the following left-invariant vector field
on G ∼= Rn:

X̃i :=
∂

∂xi
− 1

2

m∑
j=1

n∑
`=m+1

xjc
`
ij

∂

∂y`
.

Observations:

the coefficients in front of ∂
∂xi

is one for i = 1, · · · ,m,

in the double sum the variable xi does not appear (c`ii = 0 for all `).

Let P = Lebesgue measure be the Popp measure on G ∼= Rn.

Goal: Calculate the P-divergence of Xi for i = 1, · · · ,m:

From the above observations:

LX̃i

(
dx1 ∧ · · · ∧ dxm ∧ dym+1 ∧ · · · ∧ dyn−m

)
= d ◦ ιX̃i

P = d
(
P
(
X̃i , ·)

)
= 0.

Therefore divP(Xi ) = 0 for all i = 1, · · · ,m.
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Sub-Laplacian on nilpotent Lie groups

Example (continued)

Conclusion: In the above example of a step-2 nilpotent Lie group we have
found:

∆sub =
m∑
i=1

[
X̃ 2
i + divω(Xi )︸ ︷︷ ︸

=0

Xi

]
=

m∑
i=1

X̃ 2
i .

Hence, the intrinsic sub-Laplacian has no first order terms. We say:

∆sub = sum of squares operator.
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A more general statement

Let G be a Lie group of dimension dim G = n. Then on G we have two
types of Haar measures. A

left-invariant n-form µL, (left-Haar measure) i.e.∫
G

f
(
a ∗ g

)
µL(g) =

∫
G

f (g)µL(g), ∀ a ∈ G , ∀f ∈ L1(G ),

right-invariant n-form µR , (right-Haar measure) i.e.∫
G

f
(
g ∗ a

)
µR(g) =

∫
G

f (g)µR(g), ∀ a ∈ G , ∀f ∈ L1(G ),

Definition

The group G is called unimodular if µL and µR are proportional.

Example: Let G be a nilpotent Lie group or G = SL(2) or G = SO(3).
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Proposition (A. Agrachev, U. Boscain, J.-P. Gauthier, F. Rossi, 2009)

Let (G ,H, 〈·, ·〉) be a left-invariant sub-Riemannian structure on a
unimodular group G .

Then the intrinsic sub-Laplacian ∆sub is a sum of squares of vector fields
(i.e. it has no first order term).

Next Goal: What are the analytic properties of ∆sub? What can be said
about the subelliptic heat flow?

Let (M,H, 〈·, ·〉) be a regular SR-manifold. Consider a local orthonormal
frame for H

[X1, · · · ,Xm] with m ≤ n = dim M.

Seen before: The intrinsic sub-Laplacian ∆sub can be expressed in the
form:

∆sub =
m∑
i=1

[
X 2
i + divω(Xi )Xi

]
.
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Hypoellipticity

Theorem (L. Hörmander, 1967)

Let Ω ⊂ Rn be open. Consider C∞- vector fields [X0, · · · ,Xm] with

rank Lie
[
X0, · · · ,Xm

]
= n, x ∈ Ω (Hörmander condition).

The differential operator L is hypoelliptic:

L :=
m∑
j=1

X 2
j + X0 + c c ∈ C∞(Ω)
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Remarks

An operator P is called hypoelliptic if

Pu = f with f , u ∈ D′(Ω)

implies: Let Ω0

open
⊂ Ω and f ∈ C∞(Ω0), then u ∈ C∞(Ω0).

The hypoellipticity statement in the Hörmander’s Theorem follows via
sub-elliptic estimates:

‖u‖s−δ ≤ CD

(
‖Au‖s + ‖u‖0

)
, u ∈ C∞0 (D

↑
)

bounded domain

elliptic operators (e.g. the Laplace operator on a Riemannian
manifold) are hypoelliptic (elliptic regularity).
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Hörmander theorem: the version on manifolds

Theorem (L. Hörmander, 1967)

Let L be a differential operator on a manifold M, that locally in a
neighborhood U of any point is written as

L =
m∑
i=1

X 2
i + X0,

where X0,X1, · · · ,Xm are C∞ - vector fields with

Lieq
{

X0,X1, · · · ,Xm

}
= TqM ∀ q ∈ U.

Then L is hypoelliptic. In particular:

The intrinsic sub-Laplacian on a SR-manifold M is hypoelliptic.
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Example: Kolmogorov operator

At the beginning of the 20th century:

A prototype of a kind of operator studied by A. N. Kolmogorov in relation
with diffusion phenomena is the following:

Example: Kolmogorov operator (proto-type)

K =
n∑

j=1

∂2
xj

+
n∑

j=1

xj∂yj − ∂t , mit (x , y , t) ∈ R2n+1

”sum of squares + a first order term.

x= velocity and y :=position.

Operator with non-negative degenerate characteristic form.
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Heat kernel of the Sub-Laplacian

Definition

The heat kernel of the sub-Laplacian ∆sub

K (t; x , y) : (0,∞)×M ×M −→ R

is the fundamental solution of the heat operator:

P :=
∂

∂t
−∆sub,

i.e. K (t; x , y) fulfills{
PK (t; ·, y) = 0, for all t > 0

limt↓0 K (t; x , ·) = δx , in the distributional sense.

Applications: Hypoelliptic diffusion and human vision. Image
reconstruction via non-isotropic diffusion. (Boscain, Citti, Sarti, · · ·
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Remarks

We assume that M is complete as a metric space.

Based on the essentially selfadjointness of ∆sub on C∞c (M) the
existence and uniqueness of the heat kernel is guaranteed. The details
are discussed in a paper by R. Strichartz. 1

Hörmander’s theorem also implies the hypoellipticity of the heat
operator P := ∂

∂t −∆sub. Since the heat kernel solves

PK (t; ·, y) = 0

and is symmetric in the space variables, it follows that K is a smooth
kernel on R+ ×M ×M.

1Robert S. Strichartz. Sub-Riemannian geometry. J. Differential Geom., 24(2):221 -
263, 1986.
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From analysis to geometry and back
Intuition: Let x , y ∈ M (Riemannian manifold):

heat kernel = K (t; x , y) =”Heat flow from x to y at time t”

”Meta-Theorem”

The heat kernel of the Sub-Laplacian ∆sub has the form of a path integral:

K (t; x , y) =

∫
Pt(x ,y)

e−St(γ)dµt(γ).

Pt(x , y) = space of curves, connecting x and y .

St(γ), classical action

St(γ) =
1

2

∫ 1

0
‖γ̇(s)‖2ds.

µt , a ”measure” on Pt(x , y).
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Example: heat asymptotic (ellipt. case)

Let X1, · · · ,Xn be vector fields on Rn, linear independent at each point
x ∈ Rn. Consider

∆ = −1

2

n∑
j=1

X 2
j + (lower order terms).

Heat kernel

The heat kernel of ∆ has the following asymptotic behaviour as t ↓ 0:

K (t; x , x ′) =

d(x, x′) =Riemannian distance between x and x′, with x near x′.

1

(2πt)
n
2

e−
↓

d(x,x′)2

2t

[
a0(x , x ′)+ a1(x , x ′)t + · · ·

]
.
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Example: Heat trace asymptotic (ellip. case)

Let M be a compact Riemannian manifold with ∂M 6= 0

∆ the Laplace-Beltrami operator (zero Dirichlet boundary conditions).

σ(∆) = {0 < λ1 ≤ λ2 ≤ · · · } the spectrum (=eigenvalues) of ∆.

Then:

∞∑
j=1

e−tλj︸ ︷︷ ︸
= heat trace

∼ C0t−
n
2 + C1t−

n−1
2 + C2t−

n−2
2 + · · · , (t ↓ 0).

With geometric quantities:

C0 =
Vol(M)

(2π)
n
2

, C1 =
Vol(∂M)

4(2π)
n−1

2

, and C2 =
1

6(2π)
n−2

2

scalar curvature∫
M

↓
R(x)dx .
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New effects: SR-geometry

Geometry:

end points of geodesics cannot be parametrized by initial velocities
(m < n).

Even locally there may be finitely many (> 1) or infinitely many
SR-geodesics between x , y ∈ M.

There may be singular geodesics.

Analysis:

Let x0 ∈ M be fixed. The map x 7→ d2
cc(x0, x) is not smooth.

Even locally: the leading exponent in the asymptotic of the heat
kernel K (t, x , y) as t → 0 depends on the position of x and y

Example: SR-geodesic on the Heisenberg group H3.
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New effects: asymptotic behavior of the heat kernel

K (t, x , y) : heat kernel (HK) of the Sub-Laplacian:

Theorem, (Léandre 1987)

The following asymptotic hold:

lim
t↓0

dsR = Carnot-Carathéodory metric

t log K (t; x , y) = −

↓
dsR(x , y)2

2
.

In case of a Riemannian manifold this relation is called Varadhan formula.
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Heat asymptotic

The following improvements of the previous result are known:

Theorem, (Ben Arous 1989)

K (t; x , y) ∼ t−
dim M

2 e−
dcc(x,y)2

2t

[
a0(x , y) +O(

√
t)
]
,

(
t ↓ 0

)
if x 6= y and x is not in the cut-locus of y .

Theorem, (Ben Arous, Léandre 1991)

Asymptotic on the diagonal

K (t; x , x) =
C + O(

√
t)

t
Q
2

with Q = Hausdorff dimension of M.
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Spectral zeta functions

Another point of view is the analysis of the spectral zeta function of the
sub-Laplacian:

Spectral zeta function

Let A denote a non-negative operator with discrete spectrum

σ(A) =
{

0 ≤ λ1 < λ2 < λ3 · · · },

where λj are eigenvalues of finite multiplicity m(λj). The spectral zeta
function of A is defined by:

ζA(s) :=
∑
λj 6=0

m(λj)

λsj
.

Question: In particular, let A = ∆sub. What can be said about relations
between geometric data and the meromorphic structure of ζ∆sub

(meromorphic extension, pole distribution, residues, singularities in s = 0)?
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Next goal

”For a class of hypo-elliptic Hörmander operators generalizing the
Kolmogorov operator study the small time heat kernel expansion 2and a

relation to a problem in control theory.”

2D. Barilari, E. Paoli, Curvature terms in small time heat kernel expansion for a model
class of hypoelliptic Hörmander operators, Nonlinear analysis 164 (2017), 118-134.
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