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Plan of the talk

We will study the on- and off-diagonal heat kernel expansion for a class of
hypoelliptic operators that generalizes the Kolmogorov operator:

'D. Barilari, E. Paoli, Curvature terms in small time heat kernel expansion for a model
class of hypoelliptic Hérmander operators, Nonlinear Analysis 164; (2017), 118-134.
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Plan of the talk

We will study the on- and off-diagonal heat kernel expansion for a class of
hypoelliptic operators that generalizes the Kolmogorov operator:

Kolmogorov operator

n n
K = Z@% + ijﬁyj — 0y, mit  (x,y,t) € R
j=1 j=1

"sum of squares + a first order term.

x= velocity and y:=position.

v

By Hormander's theorem this operator is hypoelliptic and admits a smooth
heat kernel. We consider it as a model operator for the sub-Laplacian.

The presentation is based on a work by D. Barilari and E. Paoli. !

'D. Barilari, E. Paoli, Curvature terms in small time heat kernel expansion for a model

class of hypoelliptic Hérmander operators, Nonlinear Analysis 164; (2017), 118-134.
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A class of hypoelliptic operators

Let A= (a;5) € R™" and B = (b;) € R™*. Consider the second order

differential operator

n

5—12(38) s +Z 0
) Jh8x8xh , JE)X

j.h=1 j=1

Z +Xo=Ax-V + dlv(BB V),
=1

where
n
0 .
Xi = E bj,'af and E ajhxh I:1,--- ,k.
; Xj
J=1 j,h=1
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A class of hypoelliptic operators

Let A= (a;5) € R™" and B = (b;) € R™*. Consider the second order

differential operator

n

5—12(38) s +Z 0
) Jh@xaxh , JE)X

J,h=1 J=1

Z +Xo=Ax-V + dw(BB V),
=1
where
N
X,':ij;aij and Z ajhxh i:1,--- 7/(.
j=1 Jj,h=1

Question: Under which condition is the operator L hypoelliptic?
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Weak Hormander condition

Lemma
The following are equivalent:
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Weak Hormander condition

Lemma
The following are equivalent:
@ Thereis m € N with

rank[B,AB,AQB,--- AT1B] — g
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Weak Hormander condition

Lemma
The following are equivalent:
@ Thereis m € N with

rank[B,AB,AQB,--- ,A’"‘lB} _

@ The operator
L=Ax-V+ duvBBV ZX2+X0

fulfills the weak Hormander condition, i.e.
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Weak Hormander condition

Lemma
The following are equivalent:
@ Thereis m € N with

rank[B,AB,AQB,--- ,A’"‘lB} _ .
@ The operator
L=Ax-V+ duvBBV ZX2+X0

fulfills the weak Hormander condition, i.e.

Lie{[adxo]f(x,-) : /:1,...k,j€N} — T,R" VxecR"
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Weak Hormander condition

Lemma
The following are equivalent:
@ Thereis m € N with

rank[B,AB,AQB,--- ,A’"‘lB} _ .

@ The operator
L=Ax-V+ duvBBV ZX2+X0

fulfills the weak Hormander condition, i.e.
Lie{ [adXo) (X)) : i=1,---kjEN} =T,R" VxcR"

These imply hypoellipticity of L and the existence of a smooth heat kernel.
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The Kolmogorov operator

Example

Consider the case A, B € R?"*2" where

0n ln . 0n 0n
B_\/§<On o,,) and A_<In On)'
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The Kolmogorov operator

Example

Consider the case A, B € R?"*2" where

0, Iy _( 0n Oy
B_\fz(on o,,) and A_<In 0n>'
The corresponding heat operator is the Kolmogorov operator:

n n 1 .
K=Y 0.+ x0,—0:=Ax-V+ 5div(BBV) ~ 0.
j=1 j=1
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The Kolmogorov operator

Example

Consider the case A, B € R?"*?" where
On ln o 0n 0n
B_\fz(on o,,) and A_< o )
The corresponding heat operator is the Kolmogorov operator:

n n 1 .
K=Y 0.+ x0,—0:=Ax-V+ 5div(BBV) ~ 0.
j=1 j=1

The rank condition is fulfilled with m = 2:

On /n On On
O O O I

rank[B, AB] = xfz[
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An explicit form of the heat kernel

Definition
The heat kernel of £
p(t;x,y) 1 (0,00) x M x M — R

is the fundamental solution of the "heat operator”:

0
P=——
ot £,
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An explicit form of the heat kernel

Definition
The heat kernel of £

p(t;x,y) : (0,00) x M x M — R

is the fundamental solution of the "heat operator”:

0
P=—-L
ot ’
i.e. p(t;x,y) fulfills
Pp(t;-,y) =0, forall t >0
limeo p(t; x,-) = dx, in the distributional sense.
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An explicit form of the heat kernel

Definition
The heat kernel of £

p(t;x,y) : (0,00) x M x M — R

is the fundamental solution of the "heat operator”:

0
P=—-L
ot ’
i.e. p(t;x,y) fulfills
Pp(t;-,y) =0, forall t >0
limejo p(t; x,-) = 6x, in the distributional sense.

Goal: Study the asymptotic expansion of the kernel p(t;x,y) ast — 0.
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An explicit form of the heat kernel

Theorem
Let A € R™" and B € R"™K with the rank condition

rank | B, AB, A%B, - - ,A"’—ls} —n  forsome mée N,

Then:

v
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An explicit form of the heat kernel

Theorem
Let A € R™" and B € R"™K with the rank condition

rank | B, AB, A%B, - - ,Am—le} —n  forsome mée N,

Then:
a

@ The heat operator L — 5; is hypoelliptic and admits a smooth
fundamental solution

p(t:x,y) € C*(Ry x R" x R"). (%)

v

W. Bauer (Leibniz U. Hannover ) Small time heat kernel expansion March 4-10. 2018 8 /33



An explicit form of the heat kernel

Theorem
Let A € R™" and B € R"™K with the rank condition

rank | B, AB, A%B, - - ,Am—le} —n  forsome mée N,

Then:
a

@ The heat operator L — 5; is hypoelliptic and admits a smooth
fundamental solution

p(t:x,y) € C*(Ry x R" x R"). (%)

@ The kernel (x) is explicitly known:
SR — exp{ = 1(y — )" Dy - etAX)},
(271')5 vV det Dt 2
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An explicit form of the heat kernel

Theorem (continued)

Here D; € R™" is the matrix:

t
D, = et (/ e ABB*e A ds) e,
0
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An explicit form of the heat kernel

Theorem (continued)

Here D; € R"™ " is the matrix:

t
D, = et </ e ABB*e A ds> e
0

In particular, this matrix is invertible for all t > 0 (we will prove this later).

v

Next goal:

From what is known in the elliptic set-up (next slide), one expect that,
that the small time expansion of the heat kernel includes some geometric
data and data on the drift term Xj.
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An explicit form of the heat kernel

Theorem (continued)

Here D; € R"™ " is the matrix:

t
D, = et </ e ABB*e A ds> e
0

In particular, this matrix is invertible for all t > 0 (we will prove this later).

v

Next goal:

From what is known in the elliptic set-up (next slide), one expect that,
that the small time expansion of the heat kernel includes some geometric
data and data on the drift term Xj.

Q: What happens in the sub-elliptic case?
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Laplace operator with drift term

Theorem

Let (M, g) be a Riemannian manifold with Laplacian Ay and

,C:Ag—f-X().
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Laplace operator with drift term

Theorem

Let (M, g) be a Riemannian manifold with Laplacian Ay and
L=N7g+ Xo.

Then the heat kernel of L has the following on-diagonal asymptotic
expansion for small times:

. _ 1 div(Xo) , [[Xo(x0)lI>  S(x0)

where S denotes the scalar curvature of the Riemannian metric g.
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Basics on optimal control problems

Let Q c RX beasetand f:R" x Q — R".

With a given control function « : [0,00) — Q and xo € R" consider the
system of ODE:

x(0) = xi. *)

We will call the solution the response of the system.
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Basics on optimal control problems

Let Q c RX beasetand f:R" x Q — R".

With a given control function « : [0,00) — Q and xo € R" consider the
system of ODE:

x(0) = xi. *)

We will call the solution the response of the system.
Definition
The set of admissible controls is

A= {a :[0,00) = Q @ « measurable}.
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Basics on optimal control

There is the question of controllability:
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Basics on optimal control

There is the question of controllability:

Controllability problem (special case)

Given an initial point x; € R” and an end point x, € R". Does there exist
a control a(t) and a time tp > 0 with

X(to) =x €R",

where x(t) is a solution of the system (x) of ODE's?
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There is the question of controllability:

Controllability problem (special case)

Given an initial point x; € R” and an end point x, € R". Does there exist
a control a(t) and a time tp > 0 with

X(to) =x €R",

where x(t) is a solution of the system (x) of ODE's?

For our later purpose it is sufficient to consider linear systems where we
can answer the question:

Let A= (ajy) € R™" and B = (by) € R™*_ With T > 0 consider:
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Basics on optimal control

There is the question of controllability:

Controllability problem (special case)

Given an initial point x; € R” and an end point x, € R". Does there exist
a control a(t) and a time tp > 0 with

X(to) =x €R",

where x(t) is a solution of the system (x) of ODE's?

For our later purpose it is sufficient to consider linear systems where we
can answer the question:

Let A= (ajy) € R™" and B = (by) € R™*_ With T > 0 consider:

where u € L>(]0, T],]Rk). ()

X = Ax + Bu
x(0) =x €R",
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A linear control problem

For a given control u we write x,, : [0, T] — R” for the solution of the
initial value problem (xx). These are the admissible curves.
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A linear control problem

For a given control u we write x,, : [0, T] — R” for the solution of the
initial value problem (xx). These are the admissible curves.

Solution: .
x,(t) = ePxy + etA/ e ABu(s)ds.
0

Lemma
The following are equivalent:
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A linear control problem

For a given control u we write x,, : [0, T] — R” for the solution of the
initial value problem (xx). These are the admissible curves.

Solution: ,
x,(t) = ePxy + etA/ e ABu(s)ds.
0

Lemma
The following are equivalent:

(a) A solution to the controllability problem for (xx) with end point
x> € R" and time T > 0 exists.
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A linear control problem

For a given control u we write x,, : [0, T] — R” for the solution of the
initial value problem (xx). These are the admissible curves.

Solution:

t
x,(t) = ePxy + etA/ e ABu(s)ds.
0

Lemma

The following are equivalent:

(a) A solution to the controllability problem for (xx) with end point
x> € R" and time T > 0 exists.

(b) There is a control u € L°°([0, T],R¥) such that

-
xy = e Pxy + eTA/ e ABu(s)ds.
0
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Linear control problem

Example

Consider the following special case: Let (xp, )" = 0 and

G p=all el =l e o= e=(( )

Since the x-component of a solution is constant end points (x1, y1) with
x1 # 0 cannot be reached for any control wu-.
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Linear control problem

Example

Consider the following special case: Let (xp, )" = 0 and

G p=all el =l e o= e=(( )

Since the x-component of a solution is constant end points (x1, y1) with
x1 # 0 cannot be reached for any control wu-.

Let t > 0 and consider the following two reachable sets:

C(t) : = initial points xo for which there is
a control u such that x,(t) = 0.

C:= U C(t) = overall reachable set.
t>0
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Kalman condition

There is an algebraic condition which guarantees that C is a
zero-neighbourhood.
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Kalman condition

There is an algebraic condition which guarantees that C is a
zero-neighbourhood.

Definition

The controllability matrix for the system (xx) is defined by:

G(A,B) = |B,AB,A’B,--- ,A""1B|.

=nX(n-k)—matrix
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Kalman condition

There is an algebraic condition which guarantees that C is a
zero-neighbourhood.

Definition

The controllability matrix for the system (xx) is defined by:

G(A, B) = [B,AB,AZB,.-- A-1g] .

=nX(n-k)—matrix

Theorem (rank condition)

The following statements are equivalent: ?
(i) rank G(A, B) = n,

(i) 0 e % (interior of C).

?J. Macki, A. Strauss, introduction to optimal control, Springer, 1982
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Optimal control problem
Now we add a cost functional to the controlled ODE. With T > 0 consider

{)’( = Ax + Bu where u = (ug,---,ux) € L=(]0, T]aRk)
Jr(u) 2f0 1 lui(s)ds.
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Optimal control problem
Now we add a cost functional to the controlled ODE. With T > 0 consider

X = Ax + Bu where u = (uy,---,ux) € L=([0, T],R¥)
Ir() =5 TS u(s) s

Problem: Among all solutions x,, := [0, T| — R" corresponding to the
control u we want to minimize the cost Jr(u).
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Optimal control problem
Now we add a cost functional to the controlled ODE. With T > 0 consider

X = Ax + Bu where u = (uy,---,ux) € L=([0, T],R¥)
Ir() =5 TS u(s) s

Problem: Among all solutions x,, := [0, T| — R" corresponding to the
control u we want to minimize the cost Jr(u).

Consider the value function:
St(x1, %) = inf {JT(u) L ue L]0, T],R9), x4(0) = x, xu(T) = X2}.

This function is finite for all T > 0 and x1, xo € R” by the rank condition.
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Optimal control problem
Now we add a cost functional to the controlled ODE. With T > 0 consider

X _Ax+Bu where u = (uy,---,ux) € L=([0, T],R¥)
Ir(w) = LT ().

Problem: Among all solutions x,, := [0, T| — R" corresponding to the
control u we want to minimize the cost Jr(u).

Consider the value function:
St(x1, %) = inf {JT(u) L ue L]0, T],R9), x4(0) = x, xu(T) = X2}.
This function is finite for all T > 0 and x1, xo € R” by the rank condition.

Definition
A control u that realizes the minimum is called an optimal control. The
corresponding trajectory

xy [0, T] = R"

is an optimal trajectory.

v

W. Bauer (Leibniz U. Hannover ) Small time heat kernel expansion March 4-10. 2018 16 / 33



Optimal control problem

Q: How to find an optimal control?

We assign to the optimal control problem an Hamiltonian, i.e. a function
on the cotangent bundle:

1
H(x,p) :== p*Ax + Ep*BB*p, where  (x,p) € T*R" = R?".
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Optimal control problem
Q: How to find an optimal control?

We assign to the optimal control problem an Hamiltonian, i.e. a function
on the cotangent bundle:

1
H(x,p) :== p*Ax + Ep*BB*p, where  (x,p) € T*R" = R?".

This induces a Hamilton system:

p = —Hy=—Ap
X = H,=Ax+ BB*p.
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Optimal control problem
Q: How to find an optimal control?

We assign to the optimal control problem an Hamiltonian, i.e. a function
on the cotangent bundle:

1
H(x,p) :== p*Ax + Ep*BB*p, where  (x,p) € T*R" = R?".

This induces a Hamilton system:

X =H,=Ax+BB*p.

Proposition

Optimal trajectories are projections x(t) of the solution (x(t), p(t)) of
(HS). The control realizing the optimal trajectory is uniquely given by:

uop(t) = B p(2).
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Optimal control problem
Here is the explicit solution of the Hamilton system (HS) with initial
condition (x1, p1) € T, R™

p(t) =e p
_ tA t _sA x _—sA*
x(t) =et (xl + fo eAB B*e p1 ds). (SHS)

=Uop(s)
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Optimal control problem
Here is the explicit solution of the Hamilton system (HS) with initial
condition (x1, p1) € T, R™
p(t) =e p
_ otA t sA * ,—sA* SHS
x(t) e <x1 +f0 eAB B*e p1 ds). ( )
=Uop(s)
For each t > 0 we define

t
M= / eABB*e A" ds € R"™*".
0
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Optimal control problem

Here is the explicit solution of the Hamilton system (HS) with initial
condition (x1, p1) € T, R™

p(t) =e p
_ tA t _sA x _—sA*
x(t) =et (xl + fo eAB B*e p1 ds). (SHS)

=Uop(s)

For each t > 0 we define
t
My = / eABB*e A" ds € R™".
0

Next step: We want to show that the matrix Iy is invertible. Then we
solve the last equation in (SHS) for p;.
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Optimal control problem

Here is the explicit solution of the Hamilton system (HS) with initial
condition (x1, p1) € T, R™

p(t) =e p
_ tA t _sA x _—sA*
x(t) =et (xl + fo eAB B*e p1 ds). (SHS)
=Uop(s)
For each t > 0 we define

t
M= / eABB*e A" ds € R"™*".
0

Next step: We want to show that the matrix Iy is invertible. Then we
solve the last equation in (SHS) for p;.

Recall the controllability matrix:

G(A, B) = [B,AB,A2B,--. Am-1gl

=nx(m-k)—matrix
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An invertibility condition

Another consequence of the rank condition is the following:
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An invertibility condition

Another consequence of the rank condition is the following:

Lemma
Assume that rankG (A, B) = n, then for all t > 0 the matrix-valued integral

t
M, = / e ABB*e A" ds ¢ R"™<"
0

is invertible.
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An invertibility condition

Another consequence of the rank condition is the following:

Lemma
Assume that rankG (A, B) = n, then for all t > 0 the matrix-valued integral

t
M, = / e ABB*e A" ds ¢ R"™<"
0

is invertible.

Proof: Let x € R" such that [;x = 0. Then

t t
0= </ e ABB*e A" ds - X,X> = /
0 0

Therefore, we have 0 = B*e*4" x for all s € [0, t].

.2
B*e A XH ds.
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Proof (continued)

Taking the transpose of the last equation, we find for all s € [0, ¢]

x*e AB = 0.
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Proof (continued)
Taking the transpose of the last equation, we find for all s € [0, t]:

x*e AB = 0.

Taking derivatives of order £ € N with respect to the parameter s gives:

d" (. 0 pl —sA
O—@(xe B)—(—l)er B.
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Proof (continued)
Taking the transpose of the last equation, we find for all s € [0, ]

x*e AB = 0.

Taking derivatives of order £ € N with respect to the parameter s gives:

dﬁ

0= o

(x*e*SAB) = (—1)'x*Ale™*B.
In particular, we may choose s = 0. Then we find:

0=x"B=x*"AB=---=x*A""1B.
Since the controllability matrix

G(A,B) = [B,AB,A’B,--- A" 1B]

has linear independent rows (maximal rank n) we conclude that x = 0.
Hence I'; is injective and therefore invertible.
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The value of the value function
Next goal: Calculate the value function.

Let us go back to the solution of the Hamilton system , which stands
behind the optimal control problem:

{P(t) =e "'

X(t) — otA (Xl 4T, ,D1>. (SHS)

2(x1, p1) was the initial value in (HS)
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The value of the value function

Next goal: Calculate the value function.

Let us go back to the solution of the Hamilton system , which stands
behind the optimal control problem:

p(t) =e p
{X(t) — etA (Xl + rt . ,D1>. (SHS)

Since I'; is invertible for any t > 0 we can solve the 2nd equation for p;
with xo = x(T) 2:

pL= I’}l (e*Tsz — xl) (T >0).

2(x1, p1) was the initial value in (HS)
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The value of the value function
Next goal: Calculate the value function.

Let us go back to the solution of the Hamilton system , which stands
behind the optimal control problem:

{P(t) =e "'

X(t) — etA<X1 + rt . Pl)- (SHS)

Since I'; is invertible for any t > 0 we can solve the 2nd equation for p;
with xo = x(T) 2:
pL= I’}l (e*Tsz — xl) (T >0).

The optimal control is given by wue,(t) = B*p(t) and therefore one can
calculate:

St(x1, %) = inf {JT(U) L ue L]0, T],RY), x,(0) = x1, xo(T) = xz}.

2(x1, p1) was the initial value in (HS)
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The value of the value function

Using uop(t) = B*p(t) and p(t) = e~ p; gives:
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The value of the value function

Using uop(t) = B*p(t) and p(t) = e ™ p; gives:

St(x1,x2) = J7(Uop)
1

T 2
— 2/ ||B*p(s)H ds
0

1 /7 . .
— 5/ <B*e_SA pl,B*e_SA p1>ds
0

1

1
:—r y >:7
2< TP1,P1

ir .
2P1 Th1
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The value of the value function

Using uop(t) = B*p(t) and p(t) = e ™ p; gives:

St(x1,x2) = J7(Uop)
1

r 2
— 2/ ||B*p(s)H ds
0

1 1
= =(r )= 5pilrpn.
2< TP1,P1 2P1 TP1
Since
p1 = F}l(e_TAXQ — Xl) (T > 0)
we have:
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The value of the value function
Using uop(t) = B*p(t) and p(t) = e ™" p; gives:

St(x1,x2) = J7(Uop)

.
:;/0 HB*p(s)szs

1 /7 . .
— 2/ <B*e_5A pl,B*e_SA p1>ds
0

= %<FTP17P1> = %Pferl-
Since
p1 = F}l(e_TAXQ —x1) (T >0)
we have:
Corollary
The value function St(x1, x2) is smooth in (T, x1,x) € Ry x R” x R", J
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The geodesic cost

Let x; € R" be fixed and let x,(t) be an optimal trajectory of the problem:

X :Ax+Bu where u = (uy,---,ux) € L=([0, T],R¥)
Jr(u) = zfo i1 |ui(s)2ds

(i.e. u realizes the minimum of the cost functional J7(u)).
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The geodesic cost

Let x; € R" be fixed and let x,(t) be an optimal trajectory of the problem:

X = Ax + Bu where u = (uy,---,u) € L=([0, T],R¥)
zfo i= 1|u, (s)|ds

(i.e. u realizes the minimum of the cost functional J7(u)).

Definition
The geodesic cost corresponding to x,, is the family {¢;}; of functions:

ce(x) = =Se(x,xu(t)), where x€R".
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The geodesic cost

Let x; € R" be fixed and let x,(t) be an optimal trajectory of the problem:

{)’( :Ax+Bu where u = (uy,---,ux) € L=([0, T],R¥)
Jr(u) = zfo i1 |ui(s)2ds

(i.e. u realizes the minimum of the cost functional J7(u)).

Definition
The geodesic cost corresponding to x,, is the family {¢;}; of functions:

ce(x) = =Se(x,xu(t)), where x€R".

There is a unique minimizer of the cost functional for all trajectories
connecting x and x,(t).
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The geodesic cost

We can calculate the geodesic cost explicitly from our previous formulas:
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The geodesic cost

We can calculate the geodesic cost explicitly from our previous formulas:

Recall that x,(t) is the solution of the Hamilton system

= _A*
P P (HS)
x = Ax+ BB*p

with some initial data (xi, p1). The optimal trajectory was obtained by
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The geodesic cost

We can calculate the geodesic cost explicitly from our previous formulas:

Recall that x,(t) is the solution of the Hamilton system

= A

8 g (HS)
x = Ax+ BB*p

with some initial data (xi, p1). The optimal trajectory was obtained by

xu(t) = e (x1 + Tep1).
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The geodesic cost
We can calculate the geodesic cost explicitly from our previous formulas:

Recall that x,(t) is the solution of the Hamilton system

S
8 g (HS)
x = Ax+ BB*p

with some initial data (xi, p1). The optimal trajectory was obtained by

xu(t) = e (x1 + Tep1).
Lemma
The geodesic cost is obtained by

1 1
ce(x) = =S¢ (x, xu(t)) = =5 piTep1 + pr(x —x1) = 5(x =) Ty (x — x1).
2 2

v
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Proof of the Lemma

Proof: We use our explicit formula for S;(x, x,(t)):

Let v(s) be an optimal trajectory which connects x and x,(t). Then
v(s) = e (x+Tsp1) withsome pp € R
We use the condition v(t) = x,(t) = e (x; + I':p1) to determine pr:

p1 = r;l(Xl —Xx)+ p1.
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Proof of the Lemma

Proof: We use our explicit formula for S;(x, x,(t)):

Let v(s) be an optimal trajectory which connects x and x,(t). Then
v(s) = e (x+Tsp1) withsome pp € R
We use the condition v(t) = x,(t) = e (x; + I':p1) to determine pr:
pr=T; (1 —x)+ pr1.
Insert this expression into our previous formula for the value function

1
ct(x) = =Se(x, xu(t)) = —Eﬁfrtﬁl
1

= §<rt_1(X1 —Xx)+ pl)*rf<rt_1(xl —x)+ Pl)-
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Proof of the Lemma

Proof: We use our explicit formula for S;(x, x,(t)):

Let v(s) be an optimal trajectory which connects x and x,(t). Then

v(s) = e (x+Tsp1) withsome Py €R"

We use the condition v(t) = x,(t) = e (x; + I':p1) to determine pr:

~ -1
pr=T; (31 —x)+ p1.
Insert this expression into our previous formula for the value function

1. ..
ce(x) = =Se(x, xu(t)) = —§P1rtP1
1/ * _
= (M =)+ o) Te(F 0 = x) + 1)
Combining terms give the result.
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A family of quadratic forms

Define for t > 0 a family of quadratic forms on R¥ corresponding to c;(x):
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A family of quadratic forms

Define for t > 0 a family of quadratic forms on R¥ corresponding to c;(x):
Definition

With the previous notation put:

d

* 2 - *-—1

Q(t) =B (dX0ct>B — ——B'T:'B.

Note: )(t) does not depend on the initial data (x;, p1) and is the same

for any geodesic (intrinsic object of the control system and cost).
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A family of quadratic forms

Define for t > 0 a family of quadratic forms on R¥ corresponding to c;(x):

Definition
With the previous notation put:

d

* 2 - *-—1

Qt) =B (dX0ct>B — ——B'T:'B.

Note: )(t) does not depend on the initial data (x;, p1) and is the same

for any geodesic (intrinsic object of the control system and cost).

Remark:
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A family of quadratic forms

Define for t > 0 a family of quadratic forms on R¥ corresponding to c;(x):

Definition
With the previous notation put:

d

* 2 - *-—1

Qt) =B (dX0ct>B — ——B'T:'B.

Note: )(t) does not depend on the initial data (x;, p1) and is the same

for any geodesic (intrinsic object of the control system and cost).

Remark:

@ The family (t) is associated to each optimal trajectory.
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A family of quadratic forms

Define for t > 0 a family of quadratic forms on R¥ corresponding to c;(x):

Definition
With the previous notation put:

d

* 2 - *-—1

Qt) =B (dX0ct>B — ——B'T:'B.

Note: )(t) does not depend on the initial data (x;, p1) and is the same

for any geodesic (intrinsic object of the control system and cost).

Remark:
e The family Q(t) is associated to each optimal trajectory.

@ The coefficient matrices in the t-expansion of Q(t) which intrinsically
is induced by the underlying optimal control problem play a role in the
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A family of quadratic forms

Define for t > 0 a family of quadratic forms on R* corresponding to c;(x):

Definition
With the previous notation put:

d

* 2 - *-—1

Qt) =B (dX0ct>B — ——B'T:'B.

Note: )(t) does not depend on the initial data (x;, p1) and is the same

for any geodesic (intrinsic object of the control system and cost).

Remark:
e The family Q(t) is associated to each optimal trajectory.

@ The coefficient matrices in the t-expansion of Q(t) which intrinsically
is induced by the underlying optimal control problem play a role in the

"small time heat kernel expansion”.
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Towards the coefficients in the heat kernel expansion

Theorem (A. Agrachev, D. Barilari, L Rizzi)

Let x, : [0, T] — R" be an optimal trajectory of the optimal control
problem and (t) the corresponding family of quadratic forms:
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Towards the coefficients in the heat kernel expansion

Theorem (A. Agrachev, D. Barilari, L Rizzi)

Let x, : [0, T] — R" be an optimal trajectory of the optimal control
problem and (t) the corresponding family of quadratic forms:

(a) t > t2Q(t) extends to a smooth family of symmetric operators.

y
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Towards the coefficients in the heat kernel expansion

Theorem (A. Agrachev, D. Barilari, L Rizzi)

Let x, : [0, T] — R" be an optimal trajectory of the optimal control
problem and (t) the corresponding family of quadratic forms:

(a) t > t2Q(t) extends to a smooth family of symmetric operators
(b) The small time expansion

4
1 i) i i+1
Q(t):t21+§_0:9<>t +0(t*)  ast—0

defines symmetric matrices O\), i > 0 and .

y
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Towards the coefficients in the heat kernel expansion

Theorem (A. Agrachev, D. Barilari, L Rizzi)

Let x, : [0, T] — R" be an optimal trajectory of the optimal control
problem and (t) the corresponding family of quadratic forms:

(a) t > t2Q(t) extends to a smooth family of symmetric operators.
(b) The small time expansion

4
1 i) i i+1
Q(t):t21+§_0:9<>t +0(t*)  ast—0

defines symmetric matrices O\), i > 0 and .

(c) There is a trace formula: with k; = dimspan {B,AB,--- ,A"1B}:

m
trace = » (2 —1)(kj — ki—1).

i=1

y
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Main results

Theorem (D. Barilari, E. Paoli, 2017)

Let Ac R™", B € R™k and x € R". Consider the hypo-elliptic operator:

1
L=Ax-V+ Ediv(BB*V) (with rank condition)

with heat kernel p(t;x,y) € C®°(R4 x R” x R"). Assume that Axp = 0.

t—%trI

@) \@{Zat + O(t “1} (t — 0),

p(t7X0,X0)

where

ai=Pi(tr Atr 0O, tr Q0-D), and P = polynomials,

W. Bauer (Leibniz U. Hannover ) Small time heat kernel expansion March 4-10. 2018 28 /33



Main results

Theorem (D. Barilari, E. Paoli, 2017)

Let Ac R™", B € R™k and x € R". Consider the hypo-elliptic operator:

1
L=Ax-V+ Ediv(BB*V) (with rank condition)

with heat kernel p(t;x,y) € C®°(R4 x R” x R"). Assume that Axp = 0.

t—%trI

p(t, xo, X0) = onive 7% {Za t' 4+ ot } (t = 0),

where

aj = P; (tr Atr OO .o tr Q(i_z)), and P; = polynomials.

g . __trA _ (tr A)? tr 90
In particular: a1 = —=5~ and ap = 5> + =5 —. )
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Main results

Theorem (D. Barilari, E. Paoli, 2017)

With x1,x> € R" consider the minimal cost function again:

St(x1, x2) = inf {JT(u) s we L]0, T], R, x,(0) = x1,x,(T) = XQ}.
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Main results

Theorem (D. Barilari, E. Paoli, 2017)

With x1,x> € R" consider the minimal cost function again:
Stlx, %) = inf {Jr() : u € L2(0, T, R¥),x,(0) = x1, xs(T) = %2 }.

Then there is the following off-diagonal small time heat kernel asymptotic:

1 4

t_EtrI c ) sl

p(t; x1, Xp) ——5——e St ait' + O(t"1) (t — 0).
(2m)2+/co I.Z;
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Main results

Theorem (D. Barilari, E. Paoli, 2017)

With x1,x> € R" consider the minimal cost function again:
Stlx, %) = inf {Jr() : u € L2(0, T, R¥),x,(0) = x1, xs(T) = %2 }.

Then there is the following off-diagonal small time heat kernel asymptotic:

1 4

t_EtrI c ) i1

Pt x1, 30) ————e 2 002) N " a4 O(H) (t — 0).
(2m)2+/co —

The coefficients a; are the ones from the last theorem.
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Main results

In the final result we consider the case Axg # 0. With i =1, --

, m put:
E,-:span{A"Bx . x € RX, ogjgi—l} C R,
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Main results

In the final result we consider the case Axg # 0. With i =1,---  m put:
E,-:span{A"Bx  xeRK, 0<j< i—1} C R,
From the rank condition it is clear that we obtain a filtration of R":

E; = {span of columns of B} C E, C --- C E, = R".
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Main results

In the final result we consider the case Axg # 0. With i =1,---  m put:
E,-:span{A"Bx . x € RX, ogjgi—1} C R,
From the rank condition it is clear that we obtain a filtration of R":

E; = {span of columns of B} C E, C --- C E, = R".

Observation

Now, the small time heat kernel expansion depends on the level E; in
which we find Axg:
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Main results

Theorem (D. Barilari, E. Paoli, 2017)

Let Axg # 0. The following two cases show different behaviour:
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Main results

Theorem (D. Barilari, E. Paoli, 2017)
Let Axg # 0. The following two cases show different behaviour:

(i) If Axp € Eq, then we have polynomial decay as t — 0:

—itrT 2
p(t; x0,%0) = t;g {1 = (trA + Ax ) t+ O(tz)} .
(2m)2\/co 2 2
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Main results

Theorem (D. Barilari, E. Paoli, 2017)
Let Axg # 0. The following two cases show different behaviour:

(i) If Axp € Eq, then we have polynomial decay as t — 0:

—itrT 2
p(t; x0,%0) = t;g {1 = (trA + Ax ) t+ O(tz)} .
(2m)2\/co 2 2

(i) If Axo € E; \ Ei_1 for i > 1, then we have exponential decay to zero:
There is C > 0 such that:

1
2t C+O(t
p(t; x0,x0) = X { (t)

(27r)g\/5 e 273 } (t—0).

Remark: The case (i) corresponds to the elliptic situation with zero scalar
curvature.

v
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Laplace operator with drift term

Here is the formula again:
Theorem
Let (M, g) be a Riemannian manifold with Laplacian Az and

EZAg+X0.

Then the heat kernel of L has the following on-diagonal asymptotic small
time-expansion:

. _ 1 div(Xo) , [[Xo(x0)lI>  S(x0) 2
p(t,xo,xo)_(W)g [1-( 2°+ °2° - 6O>t+0(t)},

where S denotes the scalar curvature of the Riemannian metric g.
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