Small time heat kernel expansion for a class of model hypoelliptic Hörmander operators

Winterschool in Geilo, Norway

Wolfram Bauer
Leibniz U. Hannover

March 4-10. 2018

Outline

Outline

1. A class of hypoelliptic operators

Outline

1. A class of hypoelliptic operators
2. On a linear optimal control problem

Outline

1. A class of hypoelliptic operators
2. On a linear optimal control problem
3. Geodesic cost and coefficients in the small time expansion

Outline

1. A class of hypoelliptic operators
2. On a linear optimal control problem
3. Geodesic cost and coefficients in the small time expansion

Plan of the talk

We will study the on- and off-diagonal heat kernel expansion for a class of hypoelliptic operators that generalizes the Kolmogorov operator:

[^0]
Plan of the talk

We will study the on- and off-diagonal heat kernel expansion for a class of hypoelliptic operators that generalizes the Kolmogorov operator:

Kolmogorov operator

$$
\begin{aligned}
& K=\sum_{j=1}^{n} \partial_{x_{j}}^{2}+\sum_{j=1}^{n} x_{j} \partial_{y_{j}}-\partial_{t}, \quad \text { mit } \quad(x, y, t) \in \mathbb{R}^{2 n+1} \\
& \text { "sum of squares }+ \text { a first order term. }
\end{aligned}
$$

[^1]
Plan of the talk

We will study the on- and off-diagonal heat kernel expansion for a class of hypoelliptic operators that generalizes the Kolmogorov operator:

Kolmogorov operator

$$
\begin{aligned}
& K=\sum_{j=1}^{n} \partial_{x_{j}}^{2}+\sum_{j=1}^{n} x_{j} \partial_{y_{j}}-\partial_{t}, \quad \text { mit } \quad(x, y, t) \in \mathbb{R}^{2 n+1} \\
& \text { "sum of squares }+ \text { a first order term. }
\end{aligned}
$$

$x=$ velocity and $y:=$ position.

[^2]
Plan of the talk

We will study the on- and off-diagonal heat kernel expansion for a class of hypoelliptic operators that generalizes the Kolmogorov operator:

Kolmogorov operator

$$
\begin{aligned}
& K=\sum_{j=1}^{n} \partial_{x_{j}}^{2}+\sum_{j=1}^{n} x_{j} \partial_{y_{j}}-\partial_{t}, \quad \text { mit } \quad(x, y, t) \in \mathbb{R}^{2 n+1} \\
& \text { "sum of squares }+a \text { first order term. }
\end{aligned}
$$

$x=$ velocity and $y:=$ position.
By Hörmander's theorem this operator is hypoelliptic and admits a smooth heat kernel. We consider it as a model operator for the sub-Laplacian.

The presentation is based on a work by D. Barilari and E. Paoli. ${ }^{1}$

[^3]
A class of hypoelliptic operators

Let $A=\left(a_{j h}\right) \in \mathbb{R}^{n \times n}$ and $B=\left(b_{i l}\right) \in \mathbb{R}^{n \times k}$. Consider the second order differential operator

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} \sum_{j, h=1}^{n}\left(B B^{*}\right)_{j h} \frac{\partial^{2}}{\partial x_{j} \partial x_{h}}+\sum_{j=1}^{n}(A x) j \frac{\partial}{\partial x_{j}} \\
& =\frac{1}{2} \sum_{i=1}^{k} X_{i}^{2}+X_{0}=A x \cdot \nabla+\frac{1}{2} \operatorname{div}\left(B B^{*} \nabla\right),
\end{aligned}
$$

where

$$
X_{i}=\sum_{j=1}^{n} b_{j i} \frac{\partial}{\partial x_{j}} \quad \text { and } \quad X_{0}=\sum_{j, h=1}^{n} a_{j h} x_{h} \frac{\partial}{\partial x_{j}}, \quad i=1, \cdots, k
$$

A class of hypoelliptic operators

Let $A=\left(a_{j h}\right) \in \mathbb{R}^{n \times n}$ and $B=\left(b_{i l}\right) \in \mathbb{R}^{n \times k}$. Consider the second order differential operator

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} \sum_{j, h=1}^{n}\left(B B^{*}\right)_{j h} \frac{\partial^{2}}{\partial x_{j} \partial x_{h}}+\sum_{j=1}^{n}(A x) j \frac{\partial}{\partial x_{j}} \\
& =\frac{1}{2} \sum_{i=1}^{k} x_{i}^{2}+X_{0}=A x \cdot \nabla+\frac{1}{2} \operatorname{div}\left(B B^{*} \nabla\right),
\end{aligned}
$$

where

$$
X_{i}=\sum_{j=1}^{n} b_{j i} \frac{\partial}{\partial x_{j}} \quad \text { and } \quad X_{0}=\sum_{j, h=1}^{n} a_{j h} x_{h} \frac{\partial}{\partial x_{j}}, \quad i=1, \cdots, k
$$

Question: Under which condition is the operator \mathcal{L} hypoelliptic?

Weak Hörmander condition

Lemma
The following are equivalent:

Weak Hörmander condition

Lemma

The following are equivalent:

- There is $m \in \mathbb{N}$ with

$$
\operatorname{rank}\left[B, A B, A^{2} B, \cdots, A^{m-1} B\right]=n .
$$

Weak Hörmander condition

Lemma

The following are equivalent:

- There is $m \in \mathbb{N}$ with

$$
\operatorname{rank}\left[B, A B, A^{2} B, \cdots, A^{m-1} B\right]=n
$$

- The operator

$$
\mathcal{L}=A x \cdot \nabla+\frac{1}{2} \operatorname{div}\left(B B^{*} \nabla\right)=\frac{1}{2} \sum_{i=1}^{k} X_{i}^{2}+X_{0}
$$

fulfills the weak Hörmander condition, i.e.

Weak Hörmander condition

Lemma

The following are equivalent:

- There is $m \in \mathbb{N}$ with

$$
\operatorname{rank}\left[B, A B, A^{2} B, \cdots, A^{m-1} B\right]=n
$$

- The operator

$$
\mathcal{L}=A x \cdot \nabla+\frac{1}{2} \operatorname{div}\left(B B^{*} \nabla\right)=\frac{1}{2} \sum_{i=1}^{k} X_{i}^{2}+X_{0}
$$

fulfills the weak Hörmander condition, i.e.

$$
\operatorname{Lie}\left\{\left[\operatorname{ad} X_{0}\right]^{j}\left(X_{i}\right): i=1, \cdots k, j \in \mathbb{N}\right\}_{x}=T_{x} \mathbb{R}^{n} \quad \forall x \in \mathbb{R}^{n}
$$

Weak Hörmander condition

Lemma

The following are equivalent:

- There is $m \in \mathbb{N}$ with

$$
\operatorname{rank}\left[B, A B, A^{2} B, \cdots, A^{m-1} B\right]=n .
$$

- The operator

$$
\mathcal{L}=A x \cdot \nabla+\frac{1}{2} \operatorname{div}\left(B B^{*} \nabla\right)=\frac{1}{2} \sum_{i=1}^{k} x_{i}^{2}+X_{0}
$$

fulfills the weak Hörmander condition, i.e.

$$
\operatorname{Lie}\left\{\left[\operatorname{ad} X_{0}\right]^{j}\left(X_{i}\right): i=1, \cdots k, j \in \mathbb{N}\right\}_{x}=T_{x} \mathbb{R}^{n} \quad \forall x \in \mathbb{R}^{n}
$$

These imply hypoellipticity of \mathcal{L} and the existence of a smooth heat kernel.

The Kolmogorov operator

Example

Consider the case $A, B \in \mathbb{R}^{2 n \times 2 n}$, where

$$
B=\sqrt{2}\left(\begin{array}{cc}
0_{n} & I_{n} \\
0_{n} & 0_{n}
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
0_{n} & 0_{n} \\
I_{n} & 0_{n}
\end{array}\right) \text {. }
$$

The Kolmogorov operator

Example

Consider the case $A, B \in \mathbb{R}^{2 n \times 2 n}$, where

$$
B=\sqrt{2}\left(\begin{array}{cc}
0_{n} & I_{n} \\
0_{n} & 0_{n}
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
0_{n} & 0_{n} \\
I_{n} & 0_{n}
\end{array}\right) \text {. }
$$

The corresponding heat operator is the Kolmogorov operator:

$$
K=\sum_{j=1}^{n} \partial_{x_{j}}^{2}+\sum_{j=1}^{n} x_{j} \partial_{y_{j}}-\partial_{t}=A x \cdot \nabla+\frac{1}{2} \operatorname{div}\left(B B^{*} \nabla\right)-\partial_{t} .
$$

The Kolmogorov operator

Example

Consider the case $A, B \in \mathbb{R}^{2 n \times 2 n}$, where

$$
B=\sqrt{2}\left(\begin{array}{cc}
0_{n} & I_{n} \\
0_{n} & 0_{n}
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
0_{n} & 0_{n} \\
I_{n} & 0_{n}
\end{array}\right) \text {. }
$$

The corresponding heat operator is the Kolmogorov operator:

$$
K=\sum_{j=1}^{n} \partial_{x_{j}}^{2}+\sum_{j=1}^{n} x_{j} \partial_{y_{j}}-\partial_{t}=A x \cdot \nabla+\frac{1}{2} \operatorname{div}\left(B B^{*} \nabla\right)-\partial_{t} .
$$

The rank condition is fulfilled with $m=2$:

$$
\operatorname{rank}[B, A B]=\sqrt{2}\left[\begin{array}{cccc}
0_{n} & I_{n} & 0_{n} & 0_{n} \\
0_{n} & 0_{n} & 0_{n} & I_{n}
\end{array}\right]=2 n .
$$

An explicit form of the heat kernel

Definition

The heat kernel of \mathcal{L}

$$
p(t ; x, y):(0, \infty) \times M \times M \longrightarrow \mathbb{R}
$$

is the fundamental solution of the "heat operator":

$$
P:=\frac{\partial}{\partial t}-\mathcal{L},
$$

An explicit form of the heat kernel

Definition

The heat kernel of \mathcal{L}

$$
p(t ; x, y):(0, \infty) \times M \times M \longrightarrow \mathbb{R}
$$

is the fundamental solution of the "heat operator":

$$
P:=\frac{\partial}{\partial t}-\mathcal{L},
$$

i.e. $p(t ; x, y)$ fulfills

$$
\begin{cases}\operatorname{Pp}(t ; \cdot, y)=0, & \text { for all } t>0 \\ \lim _{t \downarrow 0} p(t ; x, \cdot)=\delta_{x}, & \text { in the distributional sense. }\end{cases}
$$

An explicit form of the heat kernel

Definition

The heat kernel of \mathcal{L}

$$
p(t ; x, y):(0, \infty) \times M \times M \longrightarrow \mathbb{R}
$$

is the fundamental solution of the "heat operator":

$$
P:=\frac{\partial}{\partial t}-\mathcal{L},
$$

i.e. $p(t ; x, y)$ fulfills

$$
\begin{cases}\operatorname{Pp}(t ; \cdot, y)=0, & \text { for all } t>0 \\ \lim _{t \downarrow 0} p(t ; x, \cdot)=\delta_{x}, & \text { in the distributional sense }\end{cases}
$$

Goal: Study the asymptotic expansion of the kernel $p(t ; x, y)$ as $t \rightarrow 0$.

An explicit form of the heat kernel

Theorem
Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times k}$ with the rank condition

$$
\operatorname{rank}\left[B, A B, A^{2} B, \cdots, A^{m-1} B\right]=n \quad \text { for some } m \in \mathbb{N} \text {. }
$$

Then:

An explicit form of the heat kernel

Theorem

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times k}$ with the rank condition

$$
\operatorname{rank}\left[B, A B, A^{2} B, \cdots, A^{m-1} B\right]=n \quad \text { for some } m \in \mathbb{N} .
$$

Then:

- The heat operator $\mathcal{L}-\frac{\partial}{\partial t}$ is hypoelliptic and admits a smooth fundamental solution

$$
\begin{equation*}
p(t ; x, y) \in C^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right) \tag{*}
\end{equation*}
$$

An explicit form of the heat kernel

Theorem

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times k}$ with the rank condition

$$
\operatorname{rank}\left[B, A B, A^{2} B, \cdots, A^{m-1} B\right]=n \quad \text { for some } m \in \mathbb{N} .
$$

Then:

- The heat operator $\mathcal{L}-\frac{\partial}{\partial t}$ is hypoelliptic and admits a smooth fundamental solution

$$
\begin{equation*}
p(t ; x, y) \in C^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right) . \tag{*}
\end{equation*}
$$

- The kernel (*) is explicitly known:

$$
p(t ; x, y)=\frac{1}{(2 \pi)^{\frac{n}{2}} \sqrt{\operatorname{det} D_{t}}} \exp \left\{-\frac{1}{2}\left(y-e^{t A} x\right)^{*} D_{t}^{-1}\left(y-e^{t A} x\right)\right\}
$$

An explicit form of the heat kernel

Theorem (continued)
Here $D_{t} \in \mathbb{R}^{n \times n}$ is the matrix:

$$
D_{t}=e^{t A}\left(\int_{0}^{t} e^{-s A} B B^{*} e^{-s A^{*}} d s\right) e^{t A^{*}}
$$

An explicit form of the heat kernel

Theorem (continued)
Here $D_{t} \in \mathbb{R}^{n \times n}$ is the matrix:

$$
D_{t}=e^{t A}\left(\int_{0}^{t} e^{-s A} B B^{*} e^{-s A^{*}} d s\right) e^{t A^{*}} .
$$

In particular, this matrix is invertible for all $t>0$ (we will prove this later).

Next goal:

From what is known in the elliptic set-up (next slide), one expect that, that the small time expansion of the heat kernel includes some geometric data and data on the drift term X_{0}.

An explicit form of the heat kernel

Theorem (continued)
Here $D_{t} \in \mathbb{R}^{n \times n}$ is the matrix:

$$
D_{t}=e^{t A}\left(\int_{0}^{t} e^{-s A} B B^{*} e^{-s A^{*}} d s\right) e^{t A^{*}} .
$$

In particular, this matrix is invertible for all $t>0$ (we will prove this later).

Next goal:

From what is known in the elliptic set-up (next slide), one expect that, that the small time expansion of the heat kernel includes some geometric data and data on the drift term X_{0}.

Q: What happens in the sub-elliptic case?

Laplace operator with drift term

Theorem
Let (M, g) be a Riemannian manifold with Laplacian Δ_{g} and

$$
\mathcal{L}=\Delta_{g}+X_{0} .
$$

Laplace operator with drift term

Theorem
Let (M, g) be a Riemannian manifold with Laplacian Δ_{g} and

$$
\mathcal{L}=\Delta_{g}+X_{0} .
$$

Then the heat kernel of \mathcal{L} has the following on-diagonal asymptotic expansion for small times:
$p\left(t ; x_{0}, x_{0}\right)=\frac{1}{(4 \pi t)^{\frac{n}{2}}}\left[1-\left(\frac{\operatorname{div}\left(X_{0}\right)}{2}+\frac{\left\|X_{0}\left(x_{0}\right)\right\|^{2}}{2}-\frac{S\left(x_{0}\right)}{6}\right) t+O\left(t^{2}\right)\right]$,
where S denotes the scalar curvature of the Riemannian metric g.

Basics on optimal control problems

Let $\Omega \subset \mathbb{R}^{k}$ be a set and $f: \mathbb{R}^{n} \times \Omega \rightarrow \mathbb{R}^{n}$.
With a given control function $\alpha:[0, \infty) \rightarrow \Omega$ and $\mathrm{x}_{0} \in \mathbb{R}^{n}$ consider the system of ODE:

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=f(\mathbf{x}(t), \alpha(t)), \quad t>0 \tag{*}\\
\mathbf{x}(0)=\mathbf{x}_{1}
\end{array}\right.
$$

We will call the solution the response of the system.

Basics on optimal control problems

Let $\Omega \subset \mathbb{R}^{k}$ be a set and $f: \mathbb{R}^{n} \times \Omega \rightarrow \mathbb{R}^{n}$.
With a given control function $\alpha:[0, \infty) \rightarrow \Omega$ and $\mathrm{x}_{0} \in \mathbb{R}^{n}$ consider the system of ODE:

$$
\left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=f(\mathbf{x}(t), \alpha(t)), \quad t>0 \tag{*}\\
\mathbf{x}(0)=\mathbf{x}_{1}
\end{array}\right.
$$

We will call the solution the response of the system.

Definition

The set of admissible controls is

$$
\mathcal{A}:=\{\alpha:[0, \infty) \rightarrow \Omega: \alpha \text { measurable }\} .
$$

Basics on optimal control

There is the question of controllability:

Basics on optimal control

There is the question of controllability:

Controllability problem (special case)

Given an initial point $x_{1} \in \mathbb{R}^{n}$ and an end point $x_{2} \in \mathbb{R}^{n}$. Does there exist a control $\alpha(t)$ and a time $t_{0}>0$ with

$$
\mathbf{x}\left(t_{0}\right)=x_{2} \in \mathbb{R}^{n},
$$

where $\mathbf{x}(t)$ is a solution of the system $(*)$ of ODE's?

Basics on optimal control

There is the question of controllability:
Controllability problem (special case)
Given an initial point $x_{1} \in \mathbb{R}^{n}$ and an end point $x_{2} \in \mathbb{R}^{n}$. Does there exist a control $\alpha(t)$ and a time $t_{0}>0$ with

$$
\mathbf{x}\left(t_{0}\right)=x_{2} \in \mathbb{R}^{n},
$$

where $\mathbf{x}(t)$ is a solution of the system $(*)$ of ODE's?
For our later purpose it is sufficient to consider linear systems where we can answer the question:
Let $A=\left(a_{j h}\right) \in \mathbb{R}^{n \times n}$ and $B=\left(b_{i l}\right) \in \mathbb{R}^{n \times k}$. With $T>0$ consider:

Basics on optimal control

There is the question of controllability:

Controllability problem (special case)

Given an initial point $x_{1} \in \mathbb{R}^{n}$ and an end point $x_{2} \in \mathbb{R}^{n}$. Does there exist a control $\alpha(t)$ and a time $t_{0}>0$ with

$$
\mathbf{x}\left(t_{0}\right)=x_{2} \in \mathbb{R}^{n},
$$

where $\mathbf{x}(t)$ is a solution of the system (*) of ODE's?
For our later purpose it is sufficient to consider linear systems where we can answer the question:
Let $A=\left(a_{j h}\right) \in \mathbb{R}^{n \times n}$ and $B=\left(b_{i l}\right) \in \mathbb{R}^{n \times k}$. With $T>0$ consider:

$$
\left\{\begin{array}{ll}
\dot{\mathrm{x}} & =A \mathbf{x}+B u \tag{**}\\
\mathrm{x}(0) & =x_{1} \in \mathbb{R}^{n},
\end{array} \quad \text { where } \quad u \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right)\right.
$$

A linear control problem

For a given control u we write $\mathbf{x}_{u}:[0, T] \rightarrow \mathbb{R}^{n}$ for the solution of the initial value problem $(* *)$. These are the admissible curves.

A linear control problem

For a given control u we write $\mathrm{x}_{u}:[0, T] \rightarrow \mathbb{R}^{n}$ for the solution of the initial value problem $(* *)$. These are the admissible curves.

Solution:

$$
\mathbf{x}_{u}(t)=e^{t A} x_{1}+e^{t A} \int_{0}^{t} e^{-s A} B u(s) d s
$$

Lemma
The following are equivalent:

A linear control problem

For a given control u we write $\mathbf{x}_{u}:[0, T] \rightarrow \mathbb{R}^{n}$ for the solution of the initial value problem $(* *)$. These are the admissible curves.

Solution:

$$
\mathbf{x}_{u}(t)=e^{t A} x_{1}+e^{t A} \int_{0}^{t} e^{-s A} B u(s) d s
$$

Lemma

The following are equivalent:
(a) A solution to the controllability problem for ($* *$) with end point $x_{2} \in \mathbb{R}^{n}$ and time $T>0$ exists.

A linear control problem

For a given control u we write $\mathbf{x}_{u}:[0, T] \rightarrow \mathbb{R}^{n}$ for the solution of the initial value problem $(* *)$. These are the admissible curves.

Solution:

$$
\mathbf{x}_{u}(t)=e^{t A} x_{1}+e^{t A} \int_{0}^{t} e^{-s A} B u(s) d s
$$

Lemma

The following are equivalent:
(a) A solution to the controllability problem for ($* *$) with end point $x_{2} \in \mathbb{R}^{n}$ and time $T>0$ exists.
(b) There is a control $u \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right)$ such that

$$
x_{2}=e^{T A} x_{1}+e^{T A} \int_{0}^{T} e^{-s A} B u(s) d s .
$$

Linear control problem

Example

Consider the following special case: Let $\left(x_{0}, y_{0}\right)^{t}=0$ and

$$
\binom{\dot{x}}{\dot{y}}=A\binom{x}{y}+B\binom{u_{1}}{u_{2}}=\binom{0}{u_{2}} \text { where } A=0 \quad B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text {. }
$$

Since the x-component of a solution is constant end points $\left(x_{1}, y_{1}\right)$ with $x_{1} \neq 0$ cannot be reached for any control $u^{\prime \prime}$.

Linear control problem

Example

Consider the following special case: Let $\left(x_{0}, y_{0}\right)^{t}=0$ and

$$
\binom{\dot{x}}{\dot{y}}=A\binom{x}{y}+B\binom{u_{1}}{u_{2}}=\binom{0}{u_{2}} \text { where } A=0 \quad B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text {. }
$$

Since the x-component of a solution is constant end points $\left(x_{1}, y_{1}\right)$ with $x_{1} \neq 0$ cannot be reached for any control $u^{\prime \prime}$.

Let $t>0$ and consider the following two reachable sets:

$$
\begin{aligned}
& \mathcal{C}(t):= \text { initial points } x_{0} \text { for which there is } \\
& \text { a control u such that } \mathrm{x}_{u}(t)=0 . \\
& \mathcal{C}:=\bigcup_{t>0} \mathcal{C}(t)=\text { overall reachable set. }
\end{aligned}
$$

Kalman condition

There is an algebraic condition which guarantees that \mathcal{C} is a zero-neighbourhood.

Kalman condition

There is an algebraic condition which guarantees that \mathcal{C} is a zero-neighbourhood.

Definition

The controllability matrix for the system $(* *)$ is defined by:

$$
G(A, B)=\underbrace{\left[B, A B, A^{2} B, \cdots, A^{n-1} B\right]}_{=n \times(n \cdot k)-\text { matrix }} .
$$

Kalman condition

There is an algebraic condition which guarantees that \mathcal{C} is a zero-neighbourhood.

Definition

The controllability matrix for the system $(* *)$ is defined by:

$$
G(A, B)=\underbrace{\left[B, A B, A^{2} B, \cdots, A^{n-1} B\right]}_{=n \times(n \cdot k)-\text { matrix }} .
$$

Theorem (rank condition)

The following statements are equivalent: ${ }^{a}$
(i) $\operatorname{rank} G(A, B)=n$,
(ii) $0 \in \stackrel{\circ}{\mathcal{C}}$ (interior of \mathcal{C}).
${ }^{2}$ J. Macki, A. Strauss, introduction to optimal control, Springer, 1982

Optimal control problem

Now we add a cost functional to the controlled ODE. With $T>0$ consider

$$
\begin{cases}\dot{\mathrm{x}} & =A \mathbf{x}+B \mathbf{u}, \quad \text { where } \quad \mathbf{u}=\left(u_{1}, \cdots, u_{k}\right) \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right) \\ J_{T}(u)=\frac{1}{2} \int_{0}^{T} \sum_{i=1}^{k}\left|u_{i}(s)\right|^{2} d s .\end{cases}
$$

Optimal control problem

Now we add a cost functional to the controlled ODE. With $T>0$ consider

$$
\begin{cases}\dot{\mathrm{x}} & =A \mathbf{x}+B \mathbf{u}, \quad \text { where } \quad \mathbf{u}=\left(u_{1}, \cdots, u_{k}\right) \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right) \\ J_{T}(u)=\frac{1}{2} \int_{0}^{T} \sum_{i=1}^{k}\left|u_{i}(s)\right|^{2} d s .\end{cases}
$$

Problem: Among all solutions $x_{u}:=[0, T] \rightarrow \mathbb{R}^{n}$ corresponding to the control \mathbf{u} we want to minimize the cost $J_{T}(u)$.

Optimal control problem

Now we add a cost functional to the controlled ODE. With $T>0$ consider

$$
\begin{cases}\dot{\mathrm{x}} & =A \mathbf{x}+B \mathbf{u}, \quad \text { where } \quad \mathbf{u}=\left(u_{1}, \cdots, u_{k}\right) \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right) \\ J_{T}(u)=\frac{1}{2} \int_{0}^{T} \sum_{i=1}^{k}\left|u_{i}(s)\right|^{2} d s .\end{cases}
$$

Problem: Among all solutions $x_{u}:=[0, T] \rightarrow \mathbb{R}^{n}$ corresponding to the control \mathbf{u} we want to minimize the cost $J_{T}(u)$.
Consider the value function:

$$
S_{T}\left(x_{1}, x_{2}\right)=\inf \left\{J_{T}(u): u \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right), x_{u}(0)=x_{1}, x_{u}(T)=x_{2}\right\} .
$$

This function is finite for all $T>0$ and $x_{1}, x_{2} \in \mathbb{R}^{n}$ by the rank condition.

Optimal control problem

Now we add a cost functional to the controlled ODE. With $T>0$ consider

$$
\begin{cases}\dot{\mathbf{x}} & =A \mathbf{x}+B \mathbf{u}, \quad \text { where } \quad \mathbf{u}=\left(u_{1}, \cdots, u_{k}\right) \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right) \\ J_{T}(u)=\frac{1}{2} \int_{0}^{T} \sum_{i=1}^{k}\left|u_{i}(s)\right|^{2} d s\end{cases}
$$

Problem: Among all solutions $x_{u}:=[0, T] \rightarrow \mathbb{R}^{n}$ corresponding to the control \mathbf{u} we want to minimize the cost $J_{T}(u)$.
Consider the value function:

$$
S_{T}\left(x_{1}, x_{2}\right)=\inf \left\{J_{T}(u): u \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right), x_{u}(0)=x_{1}, x_{u}(T)=x_{2}\right\} .
$$

This function is finite for all $T>0$ and $x_{1}, x_{2} \in \mathbb{R}^{n}$ by the rank condition.

Definition

A control u that realizes the minimum is called an optimal control. The corresponding trajectory

$$
x_{u}:[0, T] \rightarrow \mathbb{R}^{n}
$$

is an optimal trajectory.

Optimal control problem

Q: How to find an optimal control?
We assign to the optimal control problem an Hamiltonian, i.e. a function on the cotangent bundle:

$$
H(x, p):=p^{*} A x+\frac{1}{2} p^{*} B B^{*} p, \quad \text { where } \quad(x, p) \in T^{*} \mathbb{R}^{n} \cong \mathbb{R}^{2 n}
$$

Optimal control problem

Q: How to find an optimal control?
We assign to the optimal control problem an Hamiltonian, i.e. a function on the cotangent bundle:

$$
H(x, p):=p^{*} A x+\frac{1}{2} p^{*} B B^{*} p, \quad \text { where } \quad(x, p) \in T^{*} \mathbb{R}^{n} \cong \mathbb{R}^{2 n}
$$

This induces a Hamilton system:

$$
\left\{\begin{align*}
\dot{p} & =-H_{x}=-A^{*} p \tag{HS}\\
\dot{x} & =H_{p}=A x+B B^{*} p
\end{align*}\right.
$$

Optimal control problem

Q: How to find an optimal control?
We assign to the optimal control problem an Hamiltonian, i.e. a function on the cotangent bundle:

$$
H(x, p):=p^{*} A x+\frac{1}{2} p^{*} B B^{*} p, \quad \text { where } \quad(x, p) \in T^{*} \mathbb{R}^{n} \cong \mathbb{R}^{2 n}
$$

This induces a Hamilton system:

$$
\left\{\begin{align*}
\dot{p} & =-H_{x}=-A^{*} p \tag{HS}\\
\dot{x} & =H_{p}=A x+B B^{*} p
\end{align*}\right.
$$

Proposition

Optimal trajectories are projections $x(t)$ of the solution $(x(t), p(t))$ of (HS). The control realizing the optimal trajectory is uniquely given by:

$$
u_{\mathrm{op}}(t)=B^{*} p(t) .
$$

Optimal control problem

Here is the explicit solution of the Hamilton system (HS) with initial condition $\left(x_{1}, p_{1}\right) \in T_{x_{1}} \mathbb{R}^{n}$:

$$
\left\{\begin{array}{l}
p(t)=e^{-t A^{*}} p_{1} \tag{SHS}\\
x(t)=e^{t A}(x_{1}+\int_{0}^{t} e^{s A} B \underbrace{B^{*} e^{-s A^{*}} p_{1}}_{=u_{\mathrm{op}}(s)} d s)
\end{array}\right.
$$

Optimal control problem

Here is the explicit solution of the Hamilton system (HS) with initial condition $\left(x_{1}, p_{1}\right) \in T_{x_{1}} \mathbb{R}^{n}$:

$$
\left\{\begin{array}{l}
p(t)=e^{-t A^{*}} p_{1} \tag{SHS}\\
x(t)=e^{t A}(x_{1}+\int_{0}^{t} e^{s A} B \underbrace{B^{*} e^{-s A^{*}} p_{1}}_{=u_{\mathrm{op}}(s)} d s)
\end{array}\right.
$$

For each $t>0$ we define

$$
\Gamma_{t}=\int_{0}^{t} e^{s A} B B^{*} e^{-s A^{*}} d s \in \mathbb{R}^{n \times n}
$$

Optimal control problem

Here is the explicit solution of the Hamilton system (HS) with initial condition $\left(x_{1}, p_{1}\right) \in T_{x_{1}} \mathbb{R}^{n}$:

$$
\left\{\begin{array}{l}
p(t)=e^{-t A^{*}} p_{1} \tag{SHS}\\
x(t)=e^{t A}(x_{1}+\int_{0}^{t} e^{s A} B \underbrace{B^{*} e^{-s A^{*}} p_{1}}_{=u_{\text {op }}(s)} d s) .
\end{array}\right.
$$

For each $t>0$ we define

$$
\Gamma_{t}=\int_{0}^{t} e^{s A} B B^{*} e^{-s A^{*}} d s \in \mathbb{R}^{n \times n}
$$

Next step: We want to show that the matrix Γ_{t} is invertible. Then we solve the last equation in (SHS) for p_{1}.

Optimal control problem

Here is the explicit solution of the Hamilton system (HS) with initial condition $\left(x_{1}, p_{1}\right) \in T_{x_{1}} \mathbb{R}^{n}$:

$$
\left\{\begin{array}{l}
p(t)=e^{-t A^{*}} p_{1} \tag{SHS}\\
x(t)=e^{t A}(x_{1}+\int_{0}^{t} e^{s A} B \underbrace{B^{*} e^{-s A^{*}} p_{1}}_{=u_{\text {op }}(s)} d s) .
\end{array}\right.
$$

For each $t>0$ we define

$$
\Gamma_{t}=\int_{0}^{t} e^{s A} B B^{*} e^{-s A^{*}} d s \in \mathbb{R}^{n \times n}
$$

Next step: We want to show that the matrix Γ_{t} is invertible. Then we solve the last equation in (SHS) for p_{1}.
Recall the controllability matrix:

$$
G(A, B)=\underbrace{\left[B, A B, A^{2} B, \cdots, A^{m-1} B\right]}_{=n \times(m \cdot k)-\text { matrix }} .
$$

An invertibility condition

Another consequence of the rank condition is the following:

An invertibility condition

Another consequence of the rank condition is the following:

Lemma

Assume that $\operatorname{rank} G(A, B)=n$, then for all $t>0$ the matrix-valued integral

$$
\Gamma_{t}=\int_{0}^{t} e^{-s A} B B^{*} e^{-s A^{*}} d s \in \mathbb{R}^{n \times n}
$$

is invertible.

An invertibility condition

Another consequence of the rank condition is the following:

Lemma

Assume that $\operatorname{rank} G(A, B)=n$, then for all $t>0$ the matrix-valued integral

$$
\Gamma_{t}=\int_{0}^{t} e^{-s A} B B^{*} e^{-s A^{*}} d s \in \mathbb{R}^{n \times n}
$$

is invertible.
Proof: Let $x \in \mathbb{R}^{n}$ such that $\Gamma_{t} x=0$. Then

$$
0=\left\langle\int_{0}^{t} e^{-s A} B B^{*} e^{-s A^{*}} d s \cdot x, x\right\rangle=\int_{0}^{t}\left\|B^{*} e^{-s A^{*}} x\right\|^{2} d s
$$

Therefore, we have $0=B^{*} e^{-s A^{*}} \times$ for all $s \in[0, t]$.

Proof (continued)

Taking the transpose of the last equation, we find for all $s \in[0, t]$:

$$
x^{*} e^{-s A} B=0
$$

Proof (continued)

Taking the transpose of the last equation, we find for all $s \in[0, t]$:

$$
x^{*} e^{-s A} B=0
$$

Taking derivatives of order $\ell \in \mathbb{N}$ with respect to the parameter s gives:

$$
0=\frac{d^{\ell}}{d s^{\ell}}\left(x^{*} e^{-s A} B\right)=(-1)^{\ell} x^{*} A^{\ell} e^{-s A} B
$$

Proof (continued)

Taking the transpose of the last equation, we find for all $s \in[0, t]$:

$$
x^{*} e^{-s A} B=0
$$

Taking derivatives of order $\ell \in \mathbb{N}$ with respect to the parameter s gives:

$$
0=\frac{d^{\ell}}{d s^{\ell}}\left(x^{*} e^{-s A} B\right)=(-1)^{\ell} x^{*} A^{\ell} e^{-s A} B
$$

In particular, we may choose $s=0$. Then we find:

$$
0=x^{*} B=x^{*} A B=\cdots=x^{*} A^{m-1} B
$$

Since the controllability matrix

$$
G(A, B)=\left[B, A B, A^{2} B, \cdots A^{m-1} B\right]
$$

has linear independent rows (maximal rank n) we conclude that $x=0$. Hence Γ_{t} is injective and therefore invertible.

The value of the value function

Next goal: Calculate the value function.
Let us go back to the solution of the Hamilton system, which stands behind the optimal control problem:

$$
\left\{\begin{array}{l}
p(t)=e^{-t A^{*}} p_{1} \tag{SHS}\\
x(t)=e^{t A}\left(x_{1}+\Gamma_{t} \cdot p_{1}\right)
\end{array}\right.
$$

[^4]
The value of the value function

Next goal: Calculate the value function.
Let us go back to the solution of the Hamilton system, which stands behind the optimal control problem:

$$
\left\{\begin{array}{l}
p(t)=e^{-t A^{*}} p_{1} \tag{SHS}\\
x(t)=e^{t A}\left(x_{1}+\Gamma_{t} \cdot p_{1}\right)
\end{array}\right.
$$

Since Γ_{t} is invertible for any $t>0$ we can solve the 2 nd equation for p_{1} with $x_{2}=x(T)^{2}$:

$$
p_{1}=\Gamma_{T}^{-1}\left(e^{-T A} x_{2}-x_{1}\right) \quad(T>0) .
$$

[^5]
The value of the value function

Next goal: Calculate the value function.
Let us go back to the solution of the Hamilton system, which stands behind the optimal control problem:

$$
\left\{\begin{align*}
p(t) & =e^{-t A^{*}} p_{1} \tag{SHS}\\
x(t) & =e^{t A}\left(x_{1}+\Gamma_{t} \cdot p_{1}\right) .
\end{align*}\right.
$$

Since Γ_{t} is invertible for any $t>0$ we can solve the 2 nd equation for p_{1} with $x_{2}=x(T)^{2}$:

$$
p_{1}=\Gamma_{T}^{-1}\left(e^{-T A} x_{2}-x_{1}\right) \quad(T>0) .
$$

The optimal control is given by $u_{\mathrm{op}}(t)=B^{*} p(t)$ and therefore one can calculate:

$$
S_{T}\left(x_{1}, x_{2}\right)=\inf \left\{J_{T}(u): u \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right), x_{u}(0)=x_{1}, x_{u}(T)=x_{2}\right\} .
$$

[^6]
The value of the value function

Using $u_{\mathrm{op}}(t)=B^{*} p(t)$ and $p(t)=e^{-t A^{*}} p_{1}$ gives:

The value of the value function

Using $u_{\mathrm{op}}(t)=B^{*} p(t)$ and $p(t)=e^{-t A^{*}} p_{1}$ gives:

$$
\begin{aligned}
S_{T}\left(x_{1}, x_{2}\right) & =J_{T}\left(u_{\mathrm{op}}\right) \\
& =\frac{1}{2} \int_{0}^{T}\left\|B^{*} p(s)\right\|^{2} d s \\
& =\frac{1}{2} \int_{0}^{T}\left\langle B^{*} e^{-s A^{*}} p_{1}, B^{*} e^{-s A^{*}} p_{1}\right\rangle d s \\
& =\frac{1}{2}\left\langle\Gamma_{T} p_{1}, p_{1}\right\rangle=\frac{1}{2} p_{1}^{*} \Gamma_{T} p_{1} .
\end{aligned}
$$

The value of the value function

Using $u_{\mathrm{op}}(t)=B^{*} p(t)$ and $p(t)=e^{-t A^{*}} p_{1}$ gives:

$$
\begin{aligned}
S_{T}\left(x_{1}, x_{2}\right) & =J_{T}\left(u_{\mathrm{op}}\right) \\
& =\frac{1}{2} \int_{0}^{T}\left\|B^{*} p(s)\right\|^{2} d s \\
& =\frac{1}{2} \int_{0}^{T}\left\langle B^{*} e^{-s A^{*}} p_{1}, B^{*} e^{-s A^{*}} p_{1}\right\rangle d s \\
& =\frac{1}{2}\left\langle\Gamma_{T} p_{1}, p_{1}\right\rangle=\frac{1}{2} p_{1}^{*} \Gamma_{T} p_{1} .
\end{aligned}
$$

Since

$$
p_{1}=\Gamma_{T}^{-1}\left(e^{-T A} x_{2}-x_{1}\right) \quad(T>0)
$$

we have:

The value of the value function

Using $u_{\text {op }}(t)=B^{*} p(t)$ and $p(t)=e^{-t A^{*}} p_{1}$ gives:

$$
\begin{aligned}
S_{T}\left(x_{1}, x_{2}\right) & =J_{T}\left(u_{\mathrm{op}}\right) \\
& =\frac{1}{2} \int_{0}^{T}\left\|B^{*} p(s)\right\|^{2} d s \\
& =\frac{1}{2} \int_{0}^{T}\left\langle B^{*} e^{-s A^{*}} p_{1}, B^{*} e^{-s A^{*}} p_{1}\right\rangle d s \\
& =\frac{1}{2}\left\langle\Gamma_{T} p_{1}, p_{1}\right\rangle=\frac{1}{2} p_{1}^{*} \Gamma_{T} p_{1} .
\end{aligned}
$$

Since

$$
p_{1}=\Gamma_{T}^{-1}\left(e^{-T A} x_{2}-x_{1}\right) \quad(T>0)
$$

we have:

Corollary

The value function $S_{T}\left(x_{1}, x_{2}\right)$ is smooth in $\left(T, x_{1}, x_{2}\right) \in \mathbb{R}_{+} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$.

The geodesic cost

Let $x_{1} \in \mathbb{R}^{n}$ be fixed and let $x_{u}(t)$ be an optimal trajectory of the problem:

$$
\begin{cases}\dot{\mathbf{x}} & =A \mathbf{x}+B \mathbf{u}, \quad \text { where } \quad \mathbf{u}=\left(u_{1}, \cdots, u_{k}\right) \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right) \\ J_{T}(u)=\frac{1}{2} \int_{0}^{T} \sum_{i=1}^{k}\left|u_{i}(s)\right|^{2} d s\end{cases}
$$

(i.e. u realizes the minimum of the cost functional $J_{T}(u)$).

The geodesic cost

Let $x_{1} \in \mathbb{R}^{n}$ be fixed and let $x_{u}(t)$ be an optimal trajectory of the problem:

$$
\begin{cases}\dot{\mathbf{x}} & =A \mathbf{x}+B \mathbf{u}, \quad \text { where } \quad \mathbf{u}=\left(u_{1}, \cdots, u_{k}\right) \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right) \\ J_{T}(u)=\frac{1}{2} \int_{0}^{T} \sum_{i=1}^{k}\left|u_{i}(s)\right|^{2} d s\end{cases}
$$

(i.e. u realizes the minimum of the cost functional $J_{T}(u)$).

Definition

The geodesic cost corresponding to x_{u} is the family $\left\{c_{t}\right\}_{t}$ of functions:

$$
c_{t}(x)=-S_{t}\left(x, x_{u}(t)\right), \quad \text { where } \quad x \in \mathbb{R}^{n}
$$

The geodesic cost

Let $x_{1} \in \mathbb{R}^{n}$ be fixed and let $x_{u}(t)$ be an optimal trajectory of the problem:

$$
\begin{cases}\dot{\mathbf{x}} & =A \mathbf{x}+B \mathbf{u}, \quad \text { where } \quad \mathbf{u}=\left(u_{1}, \cdots, u_{k}\right) \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right) \\ J_{T}(u)=\frac{1}{2} \int_{0}^{T} \sum_{i=1}^{k}\left|u_{i}(s)\right|^{2} d s\end{cases}
$$

(i.e. u realizes the minimum of the cost functional $J_{T}(u)$).

Definition

The geodesic cost corresponding to x_{u} is the family $\left\{c_{t}\right\}_{t}$ of functions:

$$
c_{t}(x)=-S_{t}\left(x, x_{u}(t)\right), \quad \text { where } \quad x \in \mathbb{R}^{n}
$$

There is a unique minimizer of the cost functional for all trajectories connecting x and $x_{u}(t)$.

The geodesic cost

We can calculate the geodesic cost explicitly from our previous formulas:

The geodesic cost

We can calculate the geodesic cost explicitly from our previous formulas: Recall that $x_{u}(t)$ is the solution of the Hamilton system

$$
\left\{\begin{align*}
\dot{p} & =-A^{*} p \tag{HS}\\
\dot{x} & =A x+B B^{*} p
\end{align*}\right.
$$

with some initial data $\left(x_{1}, p_{1}\right)$. The optimal trajectory was obtained by

The geodesic cost

We can calculate the geodesic cost explicitly from our previous formulas: Recall that $x_{u}(t)$ is the solution of the Hamilton system

$$
\left\{\begin{align*}
\dot{p} & =-A^{*} p \tag{HS}\\
\dot{x} & =A x+B B^{*} p
\end{align*}\right.
$$

with some initial data $\left(x_{1}, p_{1}\right)$. The optimal trajectory was obtained by

$$
x_{u}(t)=e^{t A}\left(x_{1}+\Gamma_{t} p_{1}\right) .
$$

The geodesic cost

We can calculate the geodesic cost explicitly from our previous formulas:
Recall that $x_{u}(t)$ is the solution of the Hamilton system

$$
\left\{\begin{align*}
\dot{p} & =-A^{*} p \tag{HS}\\
\dot{x} & =A x+B B^{*} p
\end{align*}\right.
$$

with some initial data $\left(x_{1}, p_{1}\right)$. The optimal trajectory was obtained by

$$
x_{u}(t)=e^{t A}\left(x_{1}+\Gamma_{t} p_{1}\right) .
$$

Lemma

The geodesic cost is obtained by

$$
c_{t}(x)=-S_{t}\left(x, x_{u}(t)\right)=-\frac{1}{2} p_{1}^{*} \Gamma_{t} p_{1}+p_{1}^{*}\left(x-x_{1}\right)-\frac{1}{2}\left(x-x_{1}\right)^{*} \Gamma_{t}^{-1}\left(x-x_{1}\right) .
$$

Proof of the Lemma

Proof: We use our explicit formula for $S_{t}\left(x, x_{u}(t)\right)$:
Let $v(s)$ be an optimal trajectory which connects x and $x_{u}(t)$. Then

$$
v(s)=e^{s A}\left(x+\Gamma_{s} \tilde{p_{1}}\right) \quad \text { with some } \quad \tilde{p}_{1} \in \mathbb{R}^{n}
$$

We use the condition $v(t)=x_{u}(t)=e^{t A}\left(x_{1}+\Gamma_{t} p_{1}\right)$ to determine \tilde{p}_{1} :

$$
\tilde{p}_{1}=\Gamma_{t}^{-1}\left(x_{1}-x\right)+p_{1}
$$

Proof of the Lemma

Proof: We use our explicit formula for $S_{t}\left(x, x_{u}(t)\right)$:
Let $v(s)$ be an optimal trajectory which connects x and $x_{u}(t)$. Then

$$
v(s)=e^{s A}\left(x+\Gamma_{s} \tilde{p_{1}}\right) \quad \text { with some } \quad \tilde{p}_{1} \in \mathbb{R}^{n}
$$

We use the condition $v(t)=x_{u}(t)=e^{t A}\left(x_{1}+\Gamma_{t} p_{1}\right)$ to determine \tilde{p}_{1} :

$$
\tilde{p}_{1}=\Gamma_{t}^{-1}\left(x_{1}-x\right)+p_{1}
$$

Insert this expression into our previous formula for the value function

$$
\begin{aligned}
c_{t}(x) & =-S_{t}\left(x, x_{u}(t)\right)=-\frac{1}{2} \tilde{p}_{1}^{*} \Gamma_{t} \tilde{p}_{1} \\
& =\frac{1}{2}\left(\Gamma_{t}^{-1}\left(x_{1}-x\right)+p_{1}\right)^{*} \Gamma_{t}\left(\Gamma_{t}^{-1}\left(x_{1}-x\right)+p_{1}\right) .
\end{aligned}
$$

Proof of the Lemma

Proof: We use our explicit formula for $S_{t}\left(x, x_{u}(t)\right)$:
Let $v(s)$ be an optimal trajectory which connects x and $x_{u}(t)$. Then

$$
v(s)=e^{s A}\left(x+\Gamma_{s} \tilde{p_{1}}\right) \quad \text { with some } \quad \tilde{p}_{1} \in \mathbb{R}^{n}
$$

We use the condition $v(t)=x_{u}(t)=e^{t A}\left(x_{1}+\Gamma_{t} p_{1}\right)$ to determine \tilde{p}_{1} :

$$
\tilde{p}_{1}=\Gamma_{t}^{-1}\left(x_{1}-x\right)+p_{1}
$$

Insert this expression into our previous formula for the value function

$$
\begin{aligned}
c_{t}(x) & =-S_{t}\left(x, x_{u}(t)\right)=-\frac{1}{2} \tilde{p}_{1}^{*} \Gamma_{t} \tilde{p}_{1} \\
& =\frac{1}{2}\left(\Gamma_{t}^{-1}\left(x_{1}-x\right)+p_{1}\right)^{*} \Gamma_{t}\left(\Gamma_{t}^{-1}\left(x_{1}-x\right)+p_{1}\right) .
\end{aligned}
$$

Combining terms give the result.

A family of quadratic forms

Define for $t>0$ a family of quadratic forms on \mathbb{R}^{k} corresponding to $c_{t}(x)$:

A family of quadratic forms

Define for $t>0$ a family of quadratic forms on \mathbb{R}^{k} corresponding to $c_{t}(x)$:

Definition

With the previous notation put:

$$
\mathfrak{Q}(t)=B^{*}\left(d_{x_{0}}^{2} \dot{c}_{t}\right) B=-\frac{d}{d t} B^{*} \Gamma_{t}^{-1} B .
$$

Note: $\mathfrak{Q}(t)$ does not depend on the initial data $\left(x_{1}, p_{1}\right)$ and is the same for any geodesic (intrinsic object of the control system and cost).

A family of quadratic forms

Define for $t>0$ a family of quadratic forms on \mathbb{R}^{k} corresponding to $c_{t}(x)$:

Definition

With the previous notation put:

$$
\mathfrak{Q}(t)=B^{*}\left(d_{x_{0}}^{2} \dot{c}_{t}\right) B=-\frac{d}{d t} B^{*} \Gamma_{t}^{-1} B .
$$

Note: $\mathfrak{Q}(t)$ does not depend on the initial data $\left(x_{1}, p_{1}\right)$ and is the same for any geodesic (intrinsic object of the control system and cost).

Remark:

A family of quadratic forms

Define for $t>0$ a family of quadratic forms on \mathbb{R}^{k} corresponding to $c_{t}(x)$:

Definition

With the previous notation put:

$$
\mathfrak{Q}(t)=B^{*}\left(d_{x_{0}}^{2} \dot{c}_{t}\right) B=-\frac{d}{d t} B^{*} \Gamma_{t}^{-1} B .
$$

Note: $\mathfrak{Q}(t)$ does not depend on the initial data $\left(x_{1}, p_{1}\right)$ and is the same for any geodesic (intrinsic object of the control system and cost).

Remark:

- The family $\mathfrak{Q}(t)$ is associated to each optimal trajectory.

A family of quadratic forms

Define for $t>0$ a family of quadratic forms on \mathbb{R}^{k} corresponding to $c_{t}(x)$:

Definition

With the previous notation put:

$$
\mathfrak{Q}(t)=B^{*}\left(d_{x_{0}}^{2} \dot{c}_{t}\right) B=-\frac{d}{d t} B^{*} \Gamma_{t}^{-1} B .
$$

Note: $\mathfrak{Q}(t)$ does not depend on the initial data $\left(x_{1}, p_{1}\right)$ and is the same for any geodesic (intrinsic object of the control system and cost).

Remark:

- The family $\mathfrak{Q}(t)$ is associated to each optimal trajectory.
- The coefficient matrices in the t-expansion of $\mathfrak{Q}(t)$ which intrinsically is induced by the underlying optimal control problem play a role in the

A family of quadratic forms

Define for $t>0$ a family of quadratic forms on \mathbb{R}^{k} corresponding to $c_{t}(x)$:

Definition

With the previous notation put:

$$
\mathfrak{Q}(t)=B^{*}\left(d_{x_{0}}^{2} \dot{c}_{t}\right) B=-\frac{d}{d t} B^{*} \Gamma_{t}^{-1} B .
$$

Note: $\mathfrak{Q}(t)$ does not depend on the initial data $\left(x_{1}, p_{1}\right)$ and is the same for any geodesic (intrinsic object of the control system and cost).

Remark:

- The family $\mathfrak{Q}(t)$ is associated to each optimal trajectory.
- The coefficient matrices in the t-expansion of $\mathfrak{Q}(t)$ which intrinsically is induced by the underlying optimal control problem play a role in the "small time heat kernel expansion".

Towards the coefficients in the heat kernel expansion

Theorem (A. Agrachev, D. Barilari, L Rizzi)
Let $x_{u}:[0, T] \rightarrow \mathbb{R}^{n}$ be an optimal trajectory of the optimal control problem and $\mathfrak{Q}(t)$ the corresponding family of quadratic forms:

Towards the coefficients in the heat kernel expansion

Theorem (A. Agrachev, D. Barilari, L Rizzi)
Let $x_{u}:[0, T] \rightarrow \mathbb{R}^{n}$ be an optimal trajectory of the optimal control problem and $\mathfrak{Q}(t)$ the corresponding family of quadratic forms:
(a) $t \mapsto t^{2} \mathfrak{Q}(t)$ extends to a smooth family of symmetric operators.

Towards the coefficients in the heat kernel expansion

Theorem (A. Agrachev, D. Barilari, L Rizzi)
Let $x_{u}:[0, T] \rightarrow \mathbb{R}^{n}$ be an optimal trajectory of the optimal control problem and $\mathfrak{Q}(t)$ the corresponding family of quadratic forms:
(a) $t \mapsto t^{2} \mathfrak{Q}(t)$ extends to a smooth family of symmetric operators.
(b) The small time expansion

$$
\mathfrak{Q}(t)=\frac{1}{t^{2}} \mathcal{I}+\sum_{i=0}^{\ell} \mathfrak{V}^{(i)} t^{i}+O\left(t^{i+1}\right) \quad \text { as } t \rightarrow 0
$$

defines symmetric matrices $\mathfrak{D}^{(i)}, i \geq 0$ and \mathcal{I}.

Towards the coefficients in the heat kernel expansion

Theorem (A. Agrachev, D. Barilari, L Rizzi)
Let $x_{u}:[0, T] \rightarrow \mathbb{R}^{n}$ be an optimal trajectory of the optimal control problem and $\mathfrak{Q}(t)$ the corresponding family of quadratic forms:
(a) $t \mapsto t^{2} \mathfrak{Q}(t)$ extends to a smooth family of symmetric operators.
(b) The small time expansion

$$
\mathfrak{Q}(t)=\frac{1}{t^{2}} \mathcal{I}+\sum_{i=0}^{\ell} \mathfrak{V}^{(i)} t^{i}+O\left(t^{i+1}\right) \quad \text { as } t \rightarrow 0
$$

defines symmetric matrices $\mathfrak{D}^{(i)}, i \geq 0$ and \mathcal{I}.
(c) There is a trace formula: with $k_{i}=\operatorname{dim} \operatorname{span}\left\{B, A B, \cdots, A^{i-1} B\right\}$:

$$
\operatorname{trace} \mathcal{I}=\sum_{i=1}^{m}(2 i-1)\left(k_{i}-k_{i-1}\right) .
$$

Main results

Theorem (D. Barilari, E. Paoli, 2017)
Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times k}$ and $x_{0} \in \mathbb{R}^{n}$. Consider the hypo-elliptic operator:

$$
\mathcal{L}=A x \cdot \nabla+\frac{1}{2} \operatorname{div}\left(B B^{*} \nabla\right) \quad \text { (with rank condition) }
$$

with heat kernel $p(t ; x, y) \in C^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Assume that $A x_{0}=0$.

$$
p\left(t, x_{0}, x_{0}\right)=\frac{t^{-\frac{1}{2} \operatorname{trI}}}{(2 \pi)^{\frac{n}{2}} \sqrt{c_{0}}}\left\{\sum_{i=0}^{\ell} a_{i} t^{i}+O\left(t^{\ell+1}\right)\right\} \quad(t \rightarrow 0),
$$

where

$$
a_{i}=P_{i}\left(\operatorname{tr} A, \operatorname{tr} \mathfrak{D}^{(0)}, \cdots, \operatorname{tr} \mathfrak{Q}^{(i-2)}\right), \quad \text { and } \quad P_{i}=\text { polynomials. }
$$

Main results

Theorem (D. Barilari, E. Paoli, 2017)
Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times k}$ and $x_{0} \in \mathbb{R}^{n}$. Consider the hypo-elliptic operator:

$$
\mathcal{L}=A x \cdot \nabla+\frac{1}{2} \operatorname{div}\left(B B^{*} \nabla\right) \quad \text { (with rank condition) }
$$

with heat kernel $p(t ; x, y) \in C^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Assume that $A x_{0}=0$.

$$
p\left(t, x_{0}, x_{0}\right)=\frac{t^{-\frac{1}{2} \operatorname{trI}}}{(2 \pi)^{\frac{n}{2}} \sqrt{c_{0}}}\left\{\sum_{i=0}^{\ell} a_{i} t^{i}+O\left(t^{\ell+1}\right)\right\} \quad(t \rightarrow 0),
$$

where

$$
a_{i}=P_{i}\left(\operatorname{tr} A, \operatorname{tr} \mathfrak{D}^{(0)}, \cdots, \operatorname{tr} \mathfrak{Q}^{(i-2)}\right), \quad \text { and } \quad P_{i}=\text { polynomials. }
$$

In particular: $a_{1}=-\frac{\operatorname{tr} A}{2}$ and $a_{2}=\frac{(\operatorname{tr} A)^{2}}{8}+\frac{\operatorname{tr} \mathfrak{D}^{(0)}}{4}$.

Main results

Theorem (D. Barilari, E. Paoli, 2017)
With $x_{1}, x_{2} \in \mathbb{R}^{n}$ consider the minimal cost function again:

$$
S_{T}\left(x_{1}, x_{2}\right)=\inf \left\{J_{T}(u): u \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right), x_{u}(0)=x_{1}, x_{u}(T)=x_{2}\right\} .
$$

Main results

Theorem (D. Barilari, E. Paoli, 2017)

With $x_{1}, x_{2} \in \mathbb{R}^{n}$ consider the minimal cost function again:

$$
S_{T}\left(x_{1}, x_{2}\right)=\inf \left\{J_{T}(u): u \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right), x_{u}(0)=x_{1}, x_{u}(T)=x_{2}\right\} .
$$

Then there is the following off-diagonal small time heat kernel asymptotic:

$$
p\left(t ; x_{1}, x_{2}\right) \frac{t^{-\frac{1}{2} \operatorname{trI}}}{(2 \pi)^{\frac{n}{2}} \sqrt{c_{0}}} e^{-S_{t}\left(x_{1}, x_{2}\right)}\left\{\sum_{i=0}^{\ell} a_{i} t^{i}+O\left(t^{\ell+1}\right)\right\} \quad(t \rightarrow 0) .
$$

Main results

Theorem (D. Barilari, E. Paoli, 2017)

With $x_{1}, x_{2} \in \mathbb{R}^{n}$ consider the minimal cost function again:

$$
S_{T}\left(x_{1}, x_{2}\right)=\inf \left\{J_{T}(u): u \in L^{\infty}\left([0, T], \mathbb{R}^{k}\right), x_{u}(0)=x_{1}, x_{u}(T)=x_{2}\right\} .
$$

Then there is the following off-diagonal small time heat kernel asymptotic:

$$
p\left(t ; x_{1}, x_{2}\right) \frac{t^{-\frac{1}{2} \operatorname{trI}}}{(2 \pi)^{\frac{n}{2}} \sqrt{c_{0}}} e^{-S_{t}\left(x_{1}, x_{2}\right)}\left\{\sum_{i=0}^{\ell} a_{i} t^{i}+O\left(t^{\ell+1}\right)\right\} \quad(t \rightarrow 0) .
$$

The coefficients a_{i} are the ones from the last theorem.

Main results

In the final result we consider the case $A x_{0} \neq 0$. With $i=1, \cdots, m$ put:

$$
E_{i}=\operatorname{span}\left\{A^{i} B x: x \in \mathbb{R}^{k}, 0 \leq j \leq i-1\right\} \subset \mathbb{R}^{n} .
$$

Main results

In the final result we consider the case $A x_{0} \neq 0$. With $i=1, \cdots, m$ put:

$$
E_{i}=\operatorname{span}\left\{A^{i} B x: x \in \mathbb{R}^{k}, 0 \leq j \leq i-1\right\} \subset \mathbb{R}^{n} .
$$

From the rank condition it is clear that we obtain a filtration of \mathbb{R}^{n} :

$$
E_{1}=\{\text { span of columns of } B\} \subset E_{2} \subset \cdots \subset E_{m}=\mathbb{R}^{n} .
$$

Main results

In the final result we consider the case $A x_{0} \neq 0$. With $i=1, \cdots, m$ put:

$$
E_{i}=\operatorname{span}\left\{A^{i} B x: x \in \mathbb{R}^{k}, 0 \leq j \leq i-1\right\} \subset \mathbb{R}^{n}
$$

From the rank condition it is clear that we obtain a filtration of \mathbb{R}^{n} :

$$
E_{1}=\{\text { span of columns of } B\} \subset E_{2} \subset \cdots \subset E_{m}=\mathbb{R}^{n} .
$$

Observation

Now, the small time heat kernel expansion depends on the level E_{j} in which we find $A x_{0}$:

Main results

Theorem (D. Barilari, E. Paoli, 2017)
Let $A x_{0} \neq 0$. The following two cases show different behaviour:

Main results

Theorem (D. Barilari, E. Paoli, 2017)
Let $A x_{0} \neq 0$. The following two cases show different behaviour:
(i) If $A x_{0} \in E_{1}$, then we have polynomial decay as $t \rightarrow 0$:

$$
p\left(t ; x_{0}, x_{0}\right)=\frac{t^{-\frac{1}{2} \operatorname{trI}}}{(2 \pi)^{\frac{n}{2}} \sqrt{c_{0}}}\left\{1-\left(\frac{\operatorname{tr} A}{2}+\frac{\left|A x_{0}\right|^{2}}{2}\right) t+O\left(t^{2}\right)\right\} .
$$

Main results

Theorem (D. Barilari, E. Paoli, 2017)
Let $A x_{0} \neq 0$. The following two cases show different behaviour:
(i) If $A x_{0} \in E_{1}$, then we have polynomial decay as $t \rightarrow 0$:

$$
p\left(t ; x_{0}, x_{0}\right)=\frac{t^{-\frac{1}{2} \operatorname{trI}}}{(2 \pi)^{\frac{n}{2}} \sqrt{c_{0}}}\left\{1-\left(\frac{\operatorname{tr} A}{2}+\frac{\left|A x_{0}\right|^{2}}{2}\right) t+O\left(t^{2}\right)\right\} .
$$

(ii) If $A x_{0} \in E_{i} \backslash E_{i-1}$ for $i>1$, then we have exponential decay to zero: There is $C>0$ such that:

$$
p\left(t ; x_{0}, x_{0}\right)=\frac{t^{-\frac{1}{2} \operatorname{trI}}}{(2 \pi)^{\frac{n}{2}} \sqrt{c_{0}}} \exp \left\{\frac{C+O(t)}{t^{2 i-3}}\right\} \quad(t \rightarrow 0)
$$

Remark: The case (i) corresponds to the elliptic situation with zero scalar curvature.

Laplace operator with drift term

Here is the formula again:
Theorem
Let (M, g) be a Riemannian manifold with Laplacian Δ_{g} and

$$
\mathcal{L}=\Delta_{g}+X_{0}
$$

Then the heat kernel of \mathcal{L} has the following on-diagonal asymptotic small time-expansion:

$$
p\left(t ; x_{0}, x_{0}\right)=\frac{1}{(4 \pi t)^{\frac{n}{2}}}\left[1-\left(\frac{\operatorname{div}\left(X_{0}\right)}{2}+\frac{\left\|X_{0}\left(x_{0}\right)\right\|^{2}}{2}-\frac{S\left(x_{0}\right)}{6}\right) t+O\left(t^{2}\right)\right],
$$

where S denotes the scalar curvature of the Riemannian metric g.

Thank you for your attention!

[^0]: ${ }^{1}$ D. Barilari, E. Paoli, Curvature terms in small time heat kernel expansion for a model class of hypoelliptic Hörmander operators, Nonlinear Analysis 164, (2017), 118-134.

[^1]: ${ }^{1}$ D. Barilari, E. Paoli, Curvature terms in small time heat kernel expansion for a model class of hypoelliptic Hörmander operators, Nonlinear Analysis 164, (2017), 118-134.

[^2]: ${ }^{1}$ D. Barilari, E. Paoli, Curvature terms in small time heat kernel expansion for a model class of hypoelliptic Hörmander operators, Nonlinear Analysis 164, (2017), 118-134.

[^3]: ${ }^{1}$ D. Barilari, E. Paoli, Curvature terms in small time heat kernel expansion for a model class of hypoelliptic Hörmander operators, Nonlinear Analysis 164, (2017), 118-134.

[^4]: ${ }^{2}\left(x_{1}, p_{1}\right)$ was the initial value in (HS)

[^5]: ${ }^{2}\left(x_{1}, p_{1}\right)$ was the initial value in (HS)

[^6]: ${ }^{2}\left(x_{1}, p_{1}\right)$ was the initial value in (HS)

