Fundamental solution of degenerate operators

Winterschool in Geilo, Norway

Wolfram Bauer

Leibniz U. Hannover

March 4-10. 2018

W. Bauer (Leibniz U. Hannover) Fundamental solution of degenerate operators

Outline

イロト イヨト イヨト イヨト

Outline

イロト イヨト イヨト イヨト

1. Fundamental solutions and homogeneous vector fields

3

Image: A match a ma

- 1. Fundamental solutions and homogeneous vector fields
- 2. A global lifting theorem by Folland

47 ▶

- 1. Fundamental solutions and homogeneous vector fields
- 2. A global lifting theorem by Folland
- 3. Fundamental solutions via liftings

- 1. Fundamental solutions and homogeneous vector fields
- 2. A global lifting theorem by Folland
- 3. Fundamental solutions via liftings

Consider a linear PDO ¹ *P* on \mathbb{R}^n of order *d*, i.e.

$$P = \sum_{|lpha| \leq d} a_{lpha}(x) D_x^{lpha}$$
 where $a_{lpha}(x) \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$

where we use the standard notation

$$D_x^{lpha} = rac{\partial^{|lpha|}}{\partial x_1^{lpha_1} \cdots \partial x_n^{lpha_n}} \quad \textit{for} \quad lpha \in \mathbb{N}_0^n.$$

¹PDO=partial differential operator

Consider a linear PDO ¹ P on \mathbb{R}^n of order d, i.e.

$$P = \sum_{|lpha| \le d} a_{lpha}(x) D_x^{lpha}$$
 where $a_{lpha}(x) \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$

where we use the standard notation

$$D_x^{lpha} = rac{\partial^{|lpha|}}{\partial x_1^{lpha_1} \cdots \partial x_n^{lpha_n}} \quad \textit{for} \quad lpha \in \mathbb{N}_0^n.$$

Definition

Call $\Gamma : \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : x \neq y\} \rightarrow \mathbb{R}$ a global fundamental solution if

- For every $x \in \mathbb{R}^n$ we have $\Gamma(x, \cdot) \in L^1_{loc}(\mathbb{R}^n)$.
- For every $\varphi \in C_0^\infty(\mathbb{R}^n)$

$$\int_{\mathbb{R}^n} \Gamma(x,y) P^* \varphi(y) dy = -\varphi(x).$$

¹PDO=partial differential operator

W. Bauer (Leibniz U. Hannover) Fundamental solution of degenerate operators

3

Remarks

3

• • • • • • • • • • • •

Remarks

• The defining equation of the fundamental solution is shortly written:

 $P\Gamma_x = -\delta_x = Dirac \ distribution \ supported \ at \ x.$

Remarks

• The defining equation of the fundamental solution is shortly written:

 $P\Gamma_x = -\delta_x = Dirac$ distribution supported at x.

• Existence of the fundamental solution is not always guaranteed. Showing existence (or non-existence) can be complicated.

Remarks

• The defining equation of the fundamental solution is shortly written:

 $P\Gamma_x = -\delta_x = Dirac$ distribution supported at x.

- Existence of the fundamental solution is not always guaranteed. Showing existence (or non-existence) can be complicated.
- In general, fundamental solutions are not unique, e.g. one may add a *P*-harmonic function *h* i.e.

$$Ph = 0$$

to a fundamental solution and gets another one.

Let \mathcal{L} be a linear partial differential operator on \mathbb{R}^n_{\times} (smooth coefficients).

Let \mathcal{L} be a linear partial differential operator on \mathbb{R}^n_{\times} (smooth coefficients).

Definition

The corresponding heat operator on $\mathbb{R}^n_{\mathsf{x}} \times \mathbb{R}_t$ is defined by $\mathcal{H} = \mathcal{L} - \partial_t$.

Let \mathcal{L} be a linear partial differential operator on \mathbb{R}^n_{\times} (smooth coefficients).

Definition

The corresponding heat operator on $\mathbb{R}^n_{\mathsf{x}} \times \mathbb{R}_t$ is defined by $\mathcal{H} = \mathcal{L} - \partial_t$.

Assumption:

 \mathcal{H} admits a heat kernel $\{p_t(x, y)\}_{t>0}$ which is integrable with respect to t. In particular:

 $\mathcal{L}_{y}p_{t}(x,y)=\partial_{t}p_{t}(x,y).$

Let \mathcal{L} be a linear partial differential operator on \mathbb{R}^n_{\times} (smooth coefficients).

Definition

The corresponding heat operator on $\mathbb{R}^n_X \times \mathbb{R}_t$ is defined by $\mathcal{H} = \mathcal{L} - \partial_t$.

Assumption:

 \mathcal{H} admits a heat kernel $\{p_t(x, y)\}_{t>0}$ which is integrable with respect to t. In particular:

$$\mathcal{L}_{y}p_{t}(x,y)=\partial_{t}p_{t}(x,y).$$

Observation: At least formally, a fundamental solution of \mathcal{L} is given by

$$\Gamma(x,y) = \int_0^\infty p_t(x,y) dt$$

(can be made precise in many cases).

In fact (formal calculation): Let $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, then

$$\begin{split} \int_{\mathbb{R}^n} \Gamma(x,y) \mathcal{L}^* \varphi(y) dy &= \int_{\mathbb{R}^n} \int_0^\infty p_t(x,y) dt \mathcal{L}^* \varphi(y) dy \\ &= \int_{\mathbb{R}^n} \int_0^\infty \mathcal{L}_y p_t(x,y) dt \varphi(y) dy \\ &= \int_{\mathbb{R}^n} \int_0^\infty \partial_t p_t(x,y) dt \varphi(y) dy \\ &= \int_{\mathbb{R}^n} \left[p_t(x,y) \right]_0^\infty \varphi(y) dy \\ &= -\lim_{t \to 0} \int_{\mathbb{R}^n} p_t(x,y) \varphi(y) dy = -\varphi(y). \end{split}$$

< 67 ▶

3

In fact (formal calculation): Let $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, then

$$\begin{split} \int_{\mathbb{R}^n} \Gamma(x,y) \mathcal{L}^* \varphi(y) dy &= \int_{\mathbb{R}^n} \int_0^\infty p_t(x,y) dt \mathcal{L}^* \varphi(y) dy \\ &= \int_{\mathbb{R}^n} \int_0^\infty \mathcal{L}_y p_t(x,y) dt \varphi(y) dy \\ &= \int_{\mathbb{R}^n} \int_0^\infty \partial_t p_t(x,y) dt \varphi(y) dy \\ &= \int_{\mathbb{R}^n} \left[p_t(x,y) \right]_0^\infty \varphi(y) dy \\ &= -\lim_{t \to 0} \int_{\mathbb{R}^n} p_t(x,y) \varphi(y) dy = -\varphi(y). \end{split}$$

Here we have assumed that $\lim_{t\to\infty} p_t(x, y) = 0$.

Reducing the dimension

Here is another example:

Consider the Laplace operator Δ_n on \mathbb{R}^n with n > 2 and let $p \ge 1$.

$$\Delta_n = \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2} \quad \text{and} \quad \Delta_{n+p} = \Delta_n + \sum_{j=n+1}^{n+p} \frac{\partial^2}{\partial x_j^2}.$$

Then Δ_n has the fundamental solution

$$p_n(x,y) := c_n ||x-y||^{2-n}.$$

Reducing the dimension

Here is another example:

Consider the Laplace operator Δ_n on \mathbb{R}^n with n > 2 and let $p \ge 1$.

$$\Delta_n = \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2} \quad \text{and} \quad \Delta_{n+p} = \Delta_n + \sum_{j=n+1}^{n+p} \frac{\partial^2}{\partial x_j^2}.$$

Then Δ_n has the fundamental solution

$$p_n(x,y) := c_n ||x-y||^{2-n}.$$

Observation

We can consider Δ_{n+p} for $p \ge 1$ as a

"lifting of Δ_n ",

i.e. it acts on functions only depending on the variable x_1, \dots, x_n as Δ_n .

Reducing dimension

Lemma

We obtain the fundamental solution of Δ_n from the fundamental solution of Δ_{n+p} via a "fiber integration".

$$c\left(\sqrt{x_1^2 + \dots + x_n^2}\right)^{2-n} = \int_{\mathbb{R}^p} \left(\sqrt{x_1^2 + \dots + x_n^2 + t_1^2 + \dots + t_p^2}\right)^{2-n-p} dt_1 \cdots dt_p = (*).$$

3

Reducing dimension

Lemma

We obtain the fundamental solution of Δ_n from the fundamental solution of Δ_{n+p} via a "fiber integration".

$$c\left(\sqrt{x_1^2 + \dots + x_n^2}\right)^{2-n} = \int_{\mathbb{R}^p} \left(\sqrt{x_1^2 + \dots + x_n^2 + t_1^2 + \dots + t_p^2}\right)^{2-n-p} dt_1 \dots dt_p = (*).$$

Proof: The change of variables $t = ||x||\tau$ with $\tau \in \mathbb{R}^p$ and $x \neq 0$ gives:

$$(*) = \|x\|^{p} \int_{\mathbb{R}^{p}} \left(\|x\|^{2} + \tau^{2} \|x\|^{2} \right)^{\frac{2-n-p}{2}} d\tau$$
$$= \|x\|^{2-n} \int_{\mathbb{R}^{p}} (1+\tau^{2})^{\frac{2-n-p}{2}} d\tau.$$

- 4 週 1 - 4 三 1 - 4 三 1

We describe recent work by **S. Biagi and A. Bonfiglioli**: ² Let P be a PDO with smooth coefficients.

Definition We call a PDO P_{lift} on $\mathbb{R}^n \times \mathbb{R}^p$ a lifting of P if

We describe recent work by **S. Biagi and A. Bonfiglioli**: ² Let P be a PDO with smooth coefficients.

Definition We call a PDO P_{lift} on $\mathbb{R}^n \times \mathbb{R}^p$ a lifting of P if (a) P_{lift} has smooth coefficients depending on $(x, \xi) \in \mathbb{R}^n \times \mathbb{R}^p$,

We describe recent work by S. Biagi and A. Bonfiglioli: $^{\rm 2}$

Let P be a PDO with smooth coefficients.

Definition We call a PDO P_{lift} on $\mathbb{R}^n \times \mathbb{R}^p$ a lifting of P if (a) P_{lift} has smooth coefficients depending on $(x,\xi) \in \mathbb{R}^n \times \mathbb{R}^p$, (b) For every $f \in C^{\infty}(\mathbb{R})$: $P_{\text{lift}}(f \circ \pi)(x, \xi) = (Pf)(x)$ where $(x, \xi) \in \mathbb{R}^n \times \mathbb{R}^p$.

We describe recent work by S. Biagi and A. Bonfiglioli: $^{\rm 2}$

Let P be a PDO with smooth coefficients.

Definition

We call a PDO P_{lift} on $\mathbb{R}^n \times \mathbb{R}^p$ a lifting of P if

(a) P_{lift} has smooth coefficients depending on (x, ξ) ∈ ℝⁿ × ℝ^p,
(b) For every f ∈ C[∞](ℝ):

 $P_{\text{lift}}(f \circ \pi)(x,\xi) = (Pf)(x)$ where $(x,\xi) \in \mathbb{R}^n \times \mathbb{R}^p$.

Here $\pi : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ is the projection to the *x*-coordinates:

 $\pi(x,y)=x.$

March 4-10. 2018

9 / 37

Example and equivalent formulation

Observation: P_{lift} is a lifting of P if and only if

$$P_{ ext{lift}} = P + R$$
 where $R = \sum_{eta
eq 0} r_{lpha,eta}(x,\xi) D^{lpha}_x D^{eta}_{\xi}.$

< 🗇 🕨 🔸

3. 3

10 / 37

Example and equivalent formulation

Observation: P_{lift} is a lifting of P if and only if

$$P_{ ext{lift}} = P + R$$
 where $R = \sum_{eta
eq 0} r_{lpha,eta}(x,\xi) D_x^{lpha} D_\xi^{eta}.$

Example

Consider the Grushin operator on \mathbb{R}^2 :

$$\mathcal{G} := \left(\partial_{x_1}\right)^2 + \left(x_1\partial_{x_2}\right)^2.$$

A lifting of \mathcal{G} to \mathbb{R}^3 is given by:

$$\widetilde{\mathcal{G}} = (\partial_{x_1})^2 + (\partial_{\xi} + x_1 \partial_{x_2})^2 = \mathcal{G} + \underbrace{\partial_{\xi}^2 + 2x_1 \partial_{x_2} \partial_{\xi}}_{R}.$$

Example and equivalent formulation

Observation: P_{lift} is a lifting of P if and only if

$$P_{\mathrm{lift}} = P + R$$
 where $R = \sum_{eta
eq 0} r_{lpha,eta}(x,\xi) D_x^{lpha} D_\xi^{eta}.$

Example

Consider the Grushin operator on \mathbb{R}^2 :

$$\mathcal{G} := \left(\partial_{x_1}\right)^2 + \left(x_1\partial_{x_2}\right)^2.$$

A lifting of \mathcal{G} to \mathbb{R}^3 is given by:

$$\widetilde{\mathcal{G}} = \left(\partial_{x_1}\right)^2 + \left(\partial_{\xi} + x_1\partial_{x_2}\right)^2 = \mathcal{G} + \underbrace{\partial_{\xi}^2 + 2x_1\partial_{x_2}\partial_{\xi}}_{R}.$$

10 / 37

Remark: \mathcal{G} is up to a change of variables the sub-Laplacian of the Heisenberg group. Its heat kernel is known do to the group structure.

W. Bauer (Leibniz U. Hannover) Fundamental solution of degenerate operators March 4-10. 2018

Assumption

Let P_{lift} be a lifting of P and P_{lift} admits a global fundamental solution Γ .

One may ask:

3

∃ →

< /⊒ > <

Assumption

Let P_{lift} be a lifting of P and P_{lift} admits a global fundamental solution Γ .

One may ask:

• Does P admit a fundamental solution $\widetilde{\Gamma}$?

Assumption

Let P_{lift} be a lifting of P and P_{lift} admits a global fundamental solution Γ .

One may ask:

- Does P admit a fundamental solution Γ?
- If yes, can we obtain Γ by "via integration over some variables" in Γ?

Assumption

Let P_{lift} be a lifting of P and P_{lift} admits a global fundamental solution Γ .

One may ask:

- Does P admit a fundamental solution Γ?
- If yes, can we obtain Γ by "via integration over some variables" in Γ?
- If we do not know Γ explicitly but if we have estimates on Γ. Can we use them to obtain estimates on Γ̃?

11 / 37

Assumption

Let P_{lift} be a lifting of P and P_{lift} admits a global fundamental solution Γ .

One may ask:

- Does P admit a fundamental solution Γ?
- If yes, can we obtain Γ by "via integration over some variables" in Γ?
- If we do not know Γ explicitly but if we have estimates on Γ. Can we use them to obtain estimates on Γ?

11 / 37

 Why should be lift at all? Adding more variables should make live more complicated.

Homogeneous group and dilations

Let $G = (\mathbb{R}^n, *)$ be a nilpotent Lie group.

Definition (homogeneous group)

We call G a homogeneous group, it there is $\sigma = (\sigma_1, \dots, \sigma_n) \in \mathbb{R}^n$ with

$$1 \leq \sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_n$$

such that the dilation $\delta_{\lambda}: G \to G$ with

$$\delta_{\lambda}(x_1,\cdots,x_n)=(\lambda^{\sigma_1}x_1,\cdots,\lambda^{\sigma_n}x_n)$$

is an automorphism of G for every $\lambda > 0$, i.e.

 $\delta_{\lambda}(g) * \delta_{\lambda}(h) = \delta_{\lambda}(g * h).$
Homogeneous group and dilations

Let $G = (\mathbb{R}^n, *)$ be a nilpotent Lie group.

Definition (homogeneous group)

We call G a homogeneous group, it there is $\sigma = (\sigma_1, \dots, \sigma_n) \in \mathbb{R}^n$ with

$$1 \leq \sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_n$$

such that the dilation $\delta_{\lambda}: G \to G$ with

$$\delta_{\lambda}(x_1,\cdots,x_n)=(\lambda^{\sigma_1}x_1,\cdots,\lambda^{\sigma_n}x_n)$$

is an automorphism of G for every $\lambda > 0$, i.e.

 $\delta_{\lambda}(g) * \delta_{\lambda}(h) = \delta_{\lambda}(g * h).$

E A E A E AQA

12 / 37

< (T) > <

Remark:

The dilations $\{\delta_{\lambda}\}_{\lambda}$ form a one-parameter group of automorphisms.

Example: Consider again the Heisenberg group $\mathbb{H}_3 \cong \mathbb{R}^3$ with dilation:

 $\delta_{\lambda}(x_1, x_2, x_3) := (\lambda x_1, \lambda x_2, \lambda^2 x_3) \quad \text{with} \quad (\lambda > 0).$

Example: Consider again the Heisenberg group $\mathbb{H}_3 \cong \mathbb{R}^3$ with dilation:

 $\delta_{\lambda}(x_1, x_2, x_3) := (\lambda x_1, \lambda x_2, \lambda^2 x_3)$ with $(\lambda > 0)$.

Then we have

$$\begin{split} \delta_{\lambda}(x_{1}, x_{2}, x_{3}) &* \delta_{\lambda}(y_{1}, y_{2}, y_{3}) \\ &= (\lambda x_{1}, \lambda x_{2}, \lambda^{2} x_{3}) &* (\lambda y_{1}, \lambda y_{2}, \lambda^{2} y_{3}) \\ &= \left(\lambda(x_{1} + y_{1}), \lambda(x_{2} + y_{2}), \underbrace{\lambda^{2}(x_{3} + y_{3}) + \frac{1}{2} [\lambda x_{1} \lambda y_{2} - \lambda y_{1} \lambda x_{2}]}_{=\lambda^{2} ((x_{3} + y_{3}) + \frac{1}{2} [x_{1} y_{2} - y_{1} x_{2}])} \right) \\ &= \delta_{\lambda} \Big((x_{1}, x_{2}, x_{3}) &* (y_{1}, y_{2}, y_{3}) \Big). \end{split}$$

Example: Consider again the Heisenberg group $\mathbb{H}_3 \cong \mathbb{R}^3$ with dilation:

 $\delta_{\lambda}(x_1, x_2, x_3) := (\lambda x_1, \lambda x_2, \lambda^2 x_3)$ with $(\lambda > 0)$.

Then we have

$$\begin{split} \delta_{\lambda}(x_{1}, x_{2}, x_{3}) &* \delta_{\lambda}(y_{1}, y_{2}, y_{3}) \\ &= (\lambda x_{1}, \lambda x_{2}, \lambda^{2} x_{3}) &* (\lambda y_{1}, \lambda y_{2}, \lambda^{2} y_{3}) \\ &= \left(\lambda(x_{1} + y_{1}), \lambda(x_{2} + y_{2}), \underbrace{\lambda^{2}(x_{3} + y_{3}) + \frac{1}{2} [\lambda x_{1} \lambda y_{2} - \lambda y_{1} \lambda x_{2}]}_{=\lambda^{2} ((x_{3} + y_{3}) + \frac{1}{2} [x_{1} y_{2} - y_{1} x_{2}])} \right) \\ &= \delta_{\lambda} \Big((x_{1}, x_{2}, x_{3}) &* (y_{1}, y_{2}, y_{3}) \Big). \end{split}$$

Therefore \mathbb{H}_3 is a homogeneous Lie group with $\sigma = (1, 1, 2)$.

Having dilations $\{\delta_{\lambda}\}_{\lambda}$ we can define δ_{λ} -homogeneous vector fields:

< 47 ▶ <

Having dilations $\{\delta_{\lambda}\}_{\lambda}$ we can define δ_{λ} -homogeneous vector fields:

Definition

Let X_1, \dots, X_m be C^{∞} -vector fields in $G = (\mathbb{R}^n, *)$. Then we call X_j homogeneous of degree 1 if:

 $X_i(f \circ \delta_\lambda) = \lambda(X_i f) \circ \delta_\lambda \quad \forall \lambda > 0, \ \forall f \in C^\infty(\mathbb{R}^n, \mathbb{R}).$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ …

Having dilations $\{\delta_{\lambda}\}_{\lambda}$ we can define δ_{λ} -homogeneous vector fields:

Definition

Let X_1, \dots, X_m be C^{∞} -vector fields in $G = (\mathbb{R}^n, *)$. Then we call X_j homogeneous of degree 1 if:

 $X_i(f \circ \delta_\lambda) = \lambda(X_i f) \circ \delta_\lambda \quad \forall \lambda > 0, \ \forall f \in C^\infty(\mathbb{R}^n, \mathbb{R}).$

Further assumptions: Assume that X_1, \dots, X_m

- 4 回 ト 4 三 ト - 三 - シックマ

Having dilations $\{\delta_{\lambda}\}_{\lambda}$ we can define δ_{λ} -homogeneous vector fields:

Definition

Let X_1, \dots, X_m be C^{∞} -vector fields in $G = (\mathbb{R}^n, *)$. Then we call X_j homogeneous of degree 1 if:

 $X_i(f \circ \delta_\lambda) = \lambda(X_i f) \circ \delta_\lambda \quad \forall \lambda > 0, \ \forall f \in C^{\infty}(\mathbb{R}^n, \mathbb{R}).$

Further assumptions: Assume that X_1, \dots, X_m

• are linearly independent as linear differential operators,

Having dilations $\{\delta_{\lambda}\}_{\lambda}$ we can define δ_{λ} -homogeneous vector fields:

Definition

Let X_1, \dots, X_m be C^{∞} -vector fields in $G = (\mathbb{R}^n, *)$. Then we call X_j homogeneous of degree 1 if:

 $X_i(f \circ \delta_\lambda) = \lambda(X_i f) \circ \delta_\lambda \quad \forall \lambda > 0, \ \forall f \in C^\infty(\mathbb{R}^n, \mathbb{R}).$

Further assumptions: Assume that X_1, \dots, X_m

- are linearly independent as linear differential operators,
- fulfill the Hörmander bracket generating condition, i.e for all $g \in G$:

$$\dim \left\{ X(g) \ : \ X \in \mathsf{Lie}\{X_1, \cdots, X_m\} \right\} = n.$$

Having dilations $\{\delta_{\lambda}\}_{\lambda}$ we can define δ_{λ} -homogeneous vector fields:

Definition

Let X_1, \dots, X_m be C^{∞} -vector fields in $G = (\mathbb{R}^n, *)$. Then we call X_j homogeneous of degree 1 if:

 $X_i(f \circ \delta_\lambda) = \lambda(X_i f) \circ \delta_\lambda \quad \forall \lambda > 0, \ \forall f \in C^{\infty}(\mathbb{R}^n, \mathbb{R}).$

Further assumptions: Assume that X_1, \dots, X_m

- are linearly independent as linear differential operators,
- fulfill the Hörmander bracket generating condition, i.e for all $g \in G$:

$$\mathsf{dim}\left\{X(g)\,:\,X\in\mathsf{Lie}\{X_1,\cdots,X_m\}\right\}=n.$$

Note: If X and Y are δ_{λ} -homogeneous of degree d_1 and d_2 , respectively. Then [X, Y] is δ_{λ} -homogeneous of degree $d_1 + d_2$.

Consider again the Grushin operator ${\mathcal G}$ on ${\mathbb R}^2$ defined by

$$\mathcal{G} = (\partial_{x_1})^2 + (x_1 \partial_{x_2})^2 = X_1^2 + X_2^2,$$

3

< 🗇 🕨 🔸

Consider again the Grushin operator $\mathcal G$ on $\mathbb R^2$ defined by

$$\mathcal{G} = (\partial_{x_1})^2 + (x_1 \partial_{x_2})^2 = X_1^2 + X_2^2,$$

On \mathbb{R}^2 define the dilation $\delta_{\lambda}(x_1, x_2) := (\lambda x_1, \lambda^2 x_2).$

Consider again the Grushin operator $\mathcal G$ on $\mathbb R^2$ defined by

$$\mathcal{G} = (\partial_{x_1})^2 + (x_1 \partial_{x_2})^2 = X_1^2 + X_2^2,$$

On \mathbb{R}^2 define the dilation $\delta_{\lambda}(x_1, x_2) := (\lambda x_1, \lambda^2 x_2).$

Observation

3

4 E b

< 🗇 🕨 🔸

Consider again the Grushin operator \mathcal{G} on \mathbb{R}^2 defined by

$$\mathcal{G} = (\partial_{x_1})^2 + (x_1 \partial_{x_2})^2 = X_1^2 + X_2^2,$$

On \mathbb{R}^2 define the dilation $\delta_{\lambda}(x_1, x_2) := (\lambda x_1, \lambda^2 x_2).$

Observation

• The bracket generating condition is fulfilled with m = 2, since

$$\dim \left\{ X_1 = \partial_{x_1}, X_2 = x_1 \partial_{x_2}, \left[X_1, X_2 \right] = \partial_{x_2} \right\} = 3.$$

< (17) × <

Consider again the Grushin operator $\mathcal G$ on $\mathbb R^2$ defined by

$$\mathcal{G} = (\partial_{x_1})^2 + (x_1 \partial_{x_2})^2 = X_1^2 + X_2^2,$$

On \mathbb{R}^2 define the dilation $\delta_{\lambda}(x_1, x_2) := (\lambda x_1, \lambda^2 x_2).$

Observation

• The bracket generating condition is fulfilled with m = 2, since

$$\dim \left\{ X_1 = \partial_{x_1}, X_2 = x_1 \partial_{x_2}, \left[X_1, X_2 \right] = \partial_{x_2} \right\} = 3.$$

• X_1 and X_2 are homogeneous of degree 1: Let $g = (x_1, x_2)$, then $X_1(f \circ \delta_\lambda)(g) = \partial_{x_1}[f(\lambda x_1, \lambda x_2)] = \lambda(\partial_{x_1}f)(\lambda x_1, \lambda^2 x_2) = \lambda(X_1f) \circ \delta_\lambda(g),$ $X_2(f \circ \delta_\lambda)(g) = x_1\partial_{x_2}[f(\lambda x_1, \lambda^2 x_2)] = \lambda(\lambda x_1)[\partial_{x_2}f] \circ \delta_\lambda(g) = \lambda(X_2f) \circ \delta_\lambda(g)$

3

イロト 不得下 イヨト イヨト

From homogeneous vector fields to a nilpotent Lie algebra

Let $\mathcal{X} = \{X_1, \dots, X_m\}$ be homogeneous vector fields on \mathbb{R}^n with the previous assumptions. We consider the Lie algebra generated by \mathcal{X} :

 $\mathfrak{a} := \mathrm{Lie}\left\{X_1, \cdots, X_m\right\}$

= smallest Lie subalgebra of vector fields on \mathbb{R}^n containing \mathcal{X} .

The δ_{λ} -homogeneity of the vector fields implies the following:

From homogeneous vector fields to a nilpotent Lie algebra

Let $\mathcal{X} = \{X_1, \dots, X_m\}$ be homogeneous vector fields on \mathbb{R}^n with the previous assumptions. We consider the Lie algebra generated by \mathcal{X} :

 $\mathfrak{a} := \operatorname{Lie}\left\{X_1, \cdots, X_m\right\}$

= smallest Lie subalgebra of vector fields on \mathbb{R}^n containing \mathcal{X} .

The δ_{λ} -homogeneity of the vector fields implies the following:

Lemma

The Lie algebra \mathfrak{a} is finite dimensional and it corresponds to a Carnot group

$$\mathfrak{a} = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_r$$
 and $\begin{cases} [\mathfrak{a}_1, \mathfrak{a}_{i-1}] = \mathfrak{a}_i, & 2 \leq i \leq r, \\ [\mathfrak{a}_1, \mathfrak{a}_r] = \{0\}. \end{cases}$

- 4 回 ト - 4 回 ト

From homogeneous vector fields to a nilpotent Lie algebra

Let $\mathcal{X} = \{X_1, \dots, X_m\}$ be homogeneous vector fields on \mathbb{R}^n with the previous assumptions. We consider the Lie algebra generated by \mathcal{X} :

 $\mathfrak{a} := \operatorname{Lie}\left\{X_1, \cdots, X_m\right\}$

= smallest Lie subalgebra of vector fields on \mathbb{R}^n containing \mathcal{X} .

The δ_{λ} -homogeneity of the vector fields implies the following:

Lemma

The Lie algebra \mathfrak{a} is finite dimensional and it corresponds to a Carnot group

$$\mathfrak{a} = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_r$$
 and $\begin{cases} [\mathfrak{a}_1, \mathfrak{a}_{i-1}] = \mathfrak{a}_i, & 2 \leq i \leq r, \\ [\mathfrak{a}_1, \mathfrak{a}_r] = \{0\}. \end{cases}$

Here, the "first level" is $a_1 = \text{span}\{X_1, \cdots, X_m\}$.

▲ 同 ▶ → 三 ▶

From the nilpotent Lie algebra to a Carnot group

Reminder:

We can equip \mathfrak{a} with a group structure via exponential coordinates: Via the Campbell-Baker-Hausdorff formula the product is:

$$X \diamond Y = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}[X, [X, Y]] - \frac{1}{12}[Y, [X, Y]] + \cdots$$
 (finite).

From the nilpotent Lie algebra to a Carnot group

Reminder:

We can equip a with a group structure via exponential coordinates: Via the Campbell-Baker-Hausdorff formula the product is:

$$X \diamond Y = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}[X, [X, Y]] - \frac{1}{12}[Y, [X, Y]] + \cdots$$
 (finite).

Summing up:

Lemma

Let $N := \dim \mathfrak{a}$. Then $G = (\mathfrak{a} \cong \mathbb{R}^N, \diamond)$ is a Carnot group with Lie algebra (isomorphic to) \mathfrak{a} . Moreover,

$$\mathfrak{a} = \mathsf{Lie}\Big\{X_1, \cdots, X_m\Big\}$$

is a Lie algebra of smooth vector fields on \mathbb{R}^n (we can "exponentiate").

▲ @ ▶ < ≥ ▶</p>

 $\mathfrak{a} = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_r$ with $[\mathfrak{a}_1, \mathfrak{a}_{i-1}] = \mathfrak{a}_i$.

★ 3 ★ 3

 $\mathfrak{a} = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_r$ with $[\mathfrak{a}_1, \mathfrak{a}_{i-1}] = \mathfrak{a}_i$.

Definition

For each $\lambda > 0$ define a dilation $\{\delta_{\lambda}^{\mathfrak{a}}\}_{\lambda}$ on $\mathfrak{a} \cong \mathbb{R}^{N}$ via the decomposition of elements:

$$\delta^{\mathfrak{a}}_{\lambda}(X) = \sum_{k=1}^{r} \lambda^{k} a_{k}$$
 where $X = \sum_{k=1}^{r} a_{k}$ and $a_{k} \in \mathfrak{a}_{k}$.

◆ 同 ▶ → 三 ▶

- 3

 $\mathfrak{a} = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_r$ with $[\mathfrak{a}_1, \mathfrak{a}_{i-1}] = \mathfrak{a}_i$.

Definition

For each $\lambda > 0$ define a dilation $\{\delta_{\lambda}^{\mathfrak{a}}\}_{\lambda}$ on $\mathfrak{a} \cong \mathbb{R}^{N}$ via the decomposition of elements:

$$\delta^{\mathfrak{a}}_{\lambda}(X) = \sum_{k=1}^{r} \lambda^{k} a_{k}$$
 where $X = \sum_{k=1}^{r} a_{k}$ and $a_{k} \in \mathfrak{a}_{k}$.

Lemma: The dilation $\delta^{\mathfrak{a}}_{\lambda}$ defines a group automorphism of $(G = \mathfrak{a}, \diamond)$.

 $\mathfrak{a} = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_r$ with $[\mathfrak{a}_1, \mathfrak{a}_{i-1}] = \mathfrak{a}_i$.

Definition

For each $\lambda > 0$ define a dilation $\{\delta_{\lambda}^{\mathfrak{a}}\}_{\lambda}$ on $\mathfrak{a} \cong \mathbb{R}^{N}$ via the decomposition of elements:

$$\delta^{\mathfrak{a}}_{\lambda}(X) = \sum_{k=1}^{r} \lambda^{k} a_{k}$$
 where $X = \sum_{k=1}^{r} a_{k}$ and $a_{k} \in \mathfrak{a}_{k}.$

Lemma: The dilation $\delta^{\mathfrak{a}}_{\lambda}$ defines a group automorphism of $(G = \mathfrak{a}, \diamond)$.

Proof: It is sufficient to show that δ^a_{λ} induces a Lie algebra automorphism:

Fundamental solution of degenerate operators

$$\left[\delta_{\lambda}^{\mathfrak{a}}(X), \delta_{\lambda}^{\mathfrak{a}}(Y)\right] = \left[\sum_{j=1}^{r} \lambda^{j} a_{j}, \sum_{\ell=1}^{k} \lambda^{\ell} b_{\ell}\right] = \sum_{j,\ell=1}^{r} \lambda^{j+\ell} \underbrace{[a_{j}, a_{\ell}]}_{\in \mathfrak{a}_{j+\ell}} = \delta_{\lambda}^{\mathfrak{a}}([X, Y]).$$
W. Bauer. (Leibniz U. Happover.) Eurodamental solution of degenerate operators. March 4.10, 2018 18.4.3

March 4-10, 2018

Definition

We call $(G \cong \mathfrak{a}, \diamond, \delta_{\lambda}^{\mathfrak{a}})$ a homogeneous Carnot group.

Definition

We call $(G \cong \mathfrak{a}, \diamond, \delta_{\lambda}^{\mathfrak{a}})$ a homogeneous Carnot group.

Next: Equip ($G \cong \mathfrak{a}, \diamond$) with a Sub-Riemannian structure:

Choose a linear basis of $\mathfrak{a} = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_r$ as follows:

Definition

We call $(G \cong \mathfrak{a}, \diamond, \delta_{\lambda}^{\mathfrak{a}})$ a homogeneous Carnot group.

Next: Equip $(G \cong \mathfrak{a}, \diamond)$ with a Sub-Riemannian structure:

Choose a linear basis of $\mathfrak{a} = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_r$ as follows:

• take the basis $[X_1, \cdots, X_m]$ of the first level \mathfrak{a}_1 .

Definition

We call $(G \cong \mathfrak{a}, \diamond, \delta_{\lambda}^{\mathfrak{a}})$ a homogeneous Carnot group.

Next: Equip ($G \cong \mathfrak{a}, \diamond$) with a Sub-Riemannian structure:

Choose a linear basis of $\mathfrak{a} = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_r$ as follows:

• take the basis $[X_1, \cdots, X_m]$ of the first level \mathfrak{a}_1 .

• for each $r = 2, \cdots, m$ take a basis $[X_1^{(1)}, \cdots, X_{\ell_r}^{(r)}]$ of \mathfrak{a}_r .

Definition

We call $(G \cong \mathfrak{a}, \diamond, \delta_{\lambda}^{\mathfrak{a}})$ a homogeneous Carnot group.

Next: Equip $(G \cong \mathfrak{a}, \diamond)$ with a Sub-Riemannian structure:

Choose a linear basis of $\mathfrak{a} = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_r$ as follows:

- take the basis $[X_1, \cdots, X_m]$ of the first level \mathfrak{a}_1 .
- for each $r = 2, \dots, m$ take a basis $[X_1^{(1)}, \dots, X_{\ell_r}^{(r)}]$ of \mathfrak{a}_r .

Definition

We call the basis

$$\left[X_{1}, \cdots, X_{m}, X_{1}^{(2)}, \cdots, X_{\ell_{2}}^{(2)}, \cdots, X_{1}^{(r)}, \cdots, X_{\ell_{r}}^{(r)}\right]$$

an adapted basis of the Lie algebra \mathfrak{a} . This basis gives the concrete identification between \mathfrak{a} and \mathbb{R}^N .

< 4 → <

Identifications

Via the above basis we make the following identifications:

Carnot group: $G \cong \mathfrak{a} \longleftrightarrow \mathbb{R}^N$, dilation on $G: \delta^{\mathfrak{a}}_{\lambda} \longleftrightarrow D_{\lambda}(\mathfrak{a}) = (\lambda^{\mathfrak{s}_1}\mathfrak{a}_1, \cdots, \lambda^{\mathfrak{s}_N}\mathfrak{a}_N), \quad \mathfrak{a} \in \mathbb{R}^N$.

Identifications

Via the above basis we make the following identifications:

Carnot group: $G \cong \mathfrak{a} \longleftrightarrow \mathbb{R}^N$, dilation on $G: \delta^{\mathfrak{a}}_{\lambda} \longleftrightarrow D_{\lambda}(a) = (\lambda^{s_1}a_1, \cdots, \lambda^{s_N}a_N), \quad a \in \mathbb{R}^N$.

The exponents s_i in the dilation are given by:

$$(s_1, \cdots, s_N) = (\underbrace{1, \cdots, 1}_{=\dim \mathfrak{a}_1}, \underbrace{2, \cdots, 2}_{\dim \mathfrak{a}_2}, \cdots, \underbrace{r, \cdots, r}_{\dim \mathfrak{a}_r})$$

Identifications

Via the above basis we make the following identifications:

Carnot group: $G \cong \mathfrak{a} \iff \mathbb{R}^N$, dilation on $G: \delta^{\mathfrak{a}}_{\lambda} \iff D_{\lambda}(a) = (\lambda^{s_1}a_1, \cdots, \lambda^{s_N}a_N), a \in \mathbb{R}^N$.

The exponents s_i in the dilation are given by:

$$(s_1, \cdots, s_N) = (\underbrace{1, \cdots, 1}_{=\dim \mathfrak{a}_1}, \underbrace{2, \cdots, 2}_{\dim \mathfrak{a}_2}, \cdots, \underbrace{r, \cdots, r}_{\dim \mathfrak{a}_r}).$$

Identify $[X_1, \dots, X_m]$ with left-invariant vector fields $[J_1, \dots, J_m]$ on the homogeneous Carnot group $(\mathbb{R}^N, \diamond, D_\lambda)$. Then

$$\mathcal{H} = \mathsf{span}\Big\{J_1, \cdots, J_m\Big\} \subset T\mathbb{R}^N$$

is a bracket generating distribution in the tangent bundle of \mathbb{R}^N is a single set of \mathbb{R}^N is a single set of \mathbb{R}^N .

Sub-Laplacian on \mathbb{R}^N

Observation

The homogeneous Carnot group $(\mathbb{R}^N, \diamond, D_\lambda)$ is equipped via \mathcal{H} with a Sub-Riemannian structure. Its (intrinsic) Sub-Laplacian has the form:

$$\Delta_{\mathsf{sub},G} = J_1^2 + \dots + J_m^2,$$

and defines a hypo-elliptic operator with underlying group structure.
Sub-Laplacian on \mathbb{R}^N

Observation

The homogeneous Carnot group $(\mathbb{R}^N, \diamond, D_\lambda)$ is equipped via \mathcal{H} with a Sub-Riemannian structure. Its (intrinsic) Sub-Laplacian has the form:

$$\Delta_{\mathsf{sub},G} = J_1^2 + \cdots + J_m^2,$$

and defines a hypo-elliptic operator with underlying group structure.

Question: Now we have constructed two "sum-of-squares operators":

$$\mathcal{L} = X_1^2 + \dots + X_m^2$$
 (on \mathbb{R}^n)
 $\Delta_{\mathsf{sub},G} = J_1^2 + \dots + J_m^2$, (on $G = \mathbb{R}^N$ where $N > n$).

Sub-Laplacian on \mathbb{R}^N

Observation

The homogeneous Carnot group $(\mathbb{R}^N, \diamond, D_\lambda)$ is equipped via \mathcal{H} with a Sub-Riemannian structure. Its (intrinsic) Sub-Laplacian has the form:

$$\Delta_{\mathsf{sub},G} = J_1^2 + \cdots + J_m^2,$$

and defines a hypo-elliptic operator with underlying group structure.

Question: Now we have constructed two "sum-of-squares operators":

$$\mathcal{L} = X_1^2 + \dots + X_m^2$$
 (on \mathbb{R}^n)
 $\Delta_{\mathsf{sub},G} = J_1^2 + \dots + J_m^2$, (on $G = \mathbb{R}^N$ where $N > n$).

• What is the relation between these operators?

Sub-Laplacian on \mathbb{R}^N

Observation

The homogeneous Carnot group $(\mathbb{R}^N, \diamond, D_\lambda)$ is equipped via \mathcal{H} with a Sub-Riemannian structure. Its (intrinsic) Sub-Laplacian has the form:

$$\Delta_{\mathsf{sub},G} = J_1^2 + \cdots + J_m^2,$$

and defines a hypo-elliptic operator with underlying group structure.

Question: Now we have constructed two "sum-of-squares operators":

$$\mathcal{L} = X_1^2 + \dots + X_m^2$$
 (on \mathbb{R}^n)
 $\Delta_{\mathsf{sub},G} = J_1^2 + \dots + J_m^2$, (on $G = \mathbb{R}^N$ where $N > n$).

- What is the relation between these operators?
- Can we use knowledge on $\Delta_{sub,G}$ to study \mathcal{L} ?

From the Carnot group back to \mathbb{R}^n

Let $X \in \mathfrak{a} = \text{Lie}\{X_1, \dots, X_m\}$ be a δ_{λ} -homogeneous vector field on \mathbb{R}^n . Consider the induced integral curve starting in $0 \in \mathbb{R}^n$:

$$\Psi_t^X : \mathbb{R} \to \mathbb{R}^n \quad \text{with} \quad \begin{cases} \frac{d}{dt} \Psi_t^X = X \circ \Psi_t^X, & t \in \mathbb{R} \\ \Psi_0^X = 0. \end{cases}$$

(*)

22 / 37

From the Carnot group back to \mathbb{R}^n

Let $X \in \mathfrak{a} = \text{Lie}\{X_1, \dots, X_m\}$ be a δ_{λ} -homogeneous vector field on \mathbb{R}^n . Consider the induced integral curve starting in $0 \in \mathbb{R}^n$:

$$\Psi_t^X: \mathbb{R} \to \mathbb{R}^n \quad \text{with} \quad \begin{cases} \frac{d}{dt} \Psi_t^X = X \circ \Psi_t^X, & t \in \mathbb{R} \\ \Psi_0^X = 0. \end{cases}$$
(*)

22 / 37

On the completeness

Based on the δ_{λ} -homogeneity one can show that all vector fields $X \in \mathfrak{a}$ are complete, i.e. the induced flow (*) exists for all times $t \in \mathbb{R}$.

From the Carnot group back to \mathbb{R}^n

Let $X \in \mathfrak{a} = \text{Lie}\{X_1, \dots, X_m\}$ be a δ_{λ} -homogeneous vector field on \mathbb{R}^n . Consider the induced integral curve starting in $0 \in \mathbb{R}^n$:

$$\Psi_t^X: \mathbb{R} \to \mathbb{R}^n \quad \text{with} \quad \begin{cases} \frac{d}{dt} \Psi_t^X = X \circ \Psi_t^X, & t \in \mathbb{R} \\ \Psi_0^X = 0. \end{cases}$$
(*)

On the completeness

Based on the δ_{λ} -homogeneity one can show that all vector fields $X \in \mathfrak{a}$ are complete, i.e. the induced flow (*) exists for all times $t \in \mathbb{R}$.

Consider the following map:

$$\pi: \mathbb{R}^N \to \mathbb{R}^n, \qquad \pi(a) = \left(\Psi_t^{X_a}(0)\right)_{|_{t=1}}$$

where $\mathfrak{a} \ni X_a \longleftrightarrow a \in \mathbb{R}^N$ in our identification above.

Theorem (Folland, 1977)

The map $\pi : \mathbb{R}^N \to \mathbb{R}^n$ has the following properties:

Theorem (Folland, 1977)

The map $\pi : \mathbb{R}^N \to \mathbb{R}^n$ has the following properties:

• for all $\lambda > 0$ and all $a \in \mathbb{R}^N$ we have: ^a

$$\pi(D_{\lambda}(a)) = \delta_{\lambda}(\pi(a)).$$

Theorem (Folland, 1977)

The map $\pi : \mathbb{R}^N \to \mathbb{R}^n$ has the following properties:

• for all $\lambda > 0$ and all $a \in \mathbb{R}^N$ we have: ^a

$$\pi(D_{\lambda}(a)) = \delta_{\lambda}(\pi(a)).$$

• π is a polynomial map.

Theorem (Folland, 1977)

The map $\pi : \mathbb{R}^N \to \mathbb{R}^n$ has the following properties:

• for all $\lambda > 0$ and all $a \in \mathbb{R}^N$ we have: ^a

$$\pi(D_{\lambda}(a)) = \delta_{\lambda}(\pi(a)).$$

- π is a polynomial map.
- If J₁, · · · , J_N are the left-invariant vector fields which correspond to the adapted basis of a ≅ ℝ^N, then

$$d\pi(J_i)(a) = X_i(\pi(a)), \quad \forall a \in \mathbb{R}^N,$$

where X_i is in the adapted basis of \mathfrak{a} .

^aG.B. Folland, *on the Rothschild-Stein lifting theorem*, Comm. Partial Differential Equations 2 (1977), 161-207.

Definition

We call a PDO P_{lift} on $\mathbb{R}^n \times \mathbb{R}^p$ a lifting of P if

3

▲ 周 → - ▲ 三

Definition

We call a PDO P_{lift} on $\mathbb{R}^n \times \mathbb{R}^p$ a lifting of P if

(a) P_{lift} has smooth coefficients depending on $(x,\xi) \in \mathbb{R}^n \times \mathbb{R}^p$,

3

A 🖓 h

Definition

We call a PDO P_{lift} on $\mathbb{R}^n \times \mathbb{R}^p$ a lifting of P if

(a) P_{lift} has smooth coefficients depending on $(x,\xi) \in \mathbb{R}^n \times \mathbb{R}^p$,

(b) For every $f \in C^{\infty}(\mathbb{R})$:

 $P_{\text{lift}}(f \circ \pi)(x,\xi) = (Pf)(x)$ where $(x,\xi) \in \mathbb{R}^n \times \mathbb{R}^p$.

Definition

We call a PDO P_{lift} on $\mathbb{R}^n \times \mathbb{R}^p$ a lifting of P if

- (a) P_{lift} has smooth coefficients depending on $(x,\xi) \in \mathbb{R}^n \times \mathbb{R}^p$, (b) From an $\xi \in C^{\infty}(\mathbb{R})$
- (b) For every $f \in C^{\infty}(\mathbb{R})$:

 $P_{\text{lift}}(f \circ \pi)(x,\xi) = (Pf)(x)$ where $(x,\xi) \in \mathbb{R}^n \times \mathbb{R}^p$.

Here $\pi : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ is the projection to the *x*-coordinates:

 $\pi(x,y)=x.$

24 / 37

Definition We call a PDO P_{lift} on $\mathbb{R}^n \times \mathbb{R}^p$ a lifting of P if (a) P_{lift} has smooth coefficients depending on $(x,\xi) \in \mathbb{R}^n \times \mathbb{R}^p$, (b) For every $f \in C^{\infty}(\mathbb{R})$: $P_{\text{lift}}(f \circ \pi)(x,\xi) = (Pf)(x)$ where $(x,\xi) \in \mathbb{R}^n \times \mathbb{R}^p$. Here $\pi : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ is the projection to the x-coordinates: $\pi(x, y) = x.$

Next:

Can one choose coordinates in Folland's lifting theorem in such a way that

$$\pi: \mathbb{R}^N \to \mathbb{R}^n$$

becomes just the projection onto the first *n* coordinates of a vector in $\mathbb{R}^{N}_{2,2}$

24 / 37

Theorem (S. Biagi, A. Bonfiglioli, 2017) Let X_1, \dots, X_m be δ_{λ} -homogeneous of degree 1 vector fields on \mathbb{R}^n with

 $N = \dim \operatorname{Lie} \{X_1, \cdots, X_m\}.$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (S. Biagi, A. Bonfiglioli, 2017) Let X_1, \dots, X_m be δ_{λ} -homogeneous of degree 1 vector fields on \mathbb{R}^n with

 $N = \dim \operatorname{Lie} \{X_1, \cdots, X_m\}.$

Then there is:

- 4 個 ト 4 国 ト - 4 国 ト - 三日

Theorem (S. Biagi, A. Bonfiglioli, 2017) Let X_1, \dots, X_m be δ_{λ} -homogeneous of degree 1 vector fields on \mathbb{R}^n with

 $N = \dim \operatorname{Lie} \{X_1, \cdots, X_m\}.$

Then there is:

 a homogeneous Carnot group G = (ℝ^N, ◊, D_λ) with m generators and nilpotent of step r.

B 🖌 🖌 B 🖒 - B

25 / 37

Theorem (S. Biagi, A. Bonfiglioli, 2017) Let X_1, \dots, X_m be δ_{λ} -homogeneous of degree 1 vector fields on \mathbb{R}^n with

 $N = \dim \operatorname{Lie} \{X_1, \cdots, X_m\}.$

Then there is:

- a homogeneous Carnot group G = (ℝ^N, ◊, D_λ) with m generators and nilpotent of step r.
- a system {Z₁, · · · , Z_m} of Lie generators of the Lie algebra a of G such that

 Z_i is a lifting of X_i

via the projection $\pi : \mathbb{R}^N \to \mathbb{R}^n$ onto the first *n* variables.

Theorem (S. Biagi, A. Bonfiglioli, 2017) Let X_1, \dots, X_m be δ_{λ} -homogeneous of degree 1 vector fields on \mathbb{R}^n with

 $N = \dim \operatorname{Lie} \{X_1, \cdots, X_m\}.$

Then there is:

- a homogeneous Carnot group G = (ℝ^N, ◊, D_λ) with m generators and nilpotent of step r.
- a system {*Z*₁, · · · , *Z_m*} of Lie generators of the Lie algebra a of G such that

 Z_i is a lifting of X_i

via the projection $\pi : \mathbb{R}^N \to \mathbb{R}^n$ onto the first *n* variables.

Remark: One can construct the lifting explicitly!

With the above notation we have:

Theorem (S. Biagi, A. Bonfiglioli, 2017)

The sub-Laplacian

$$\Delta_{\mathsf{sub},G} = Z_1^2 + \dots + Z_m^2$$

on the homogeneous Carnot group $(\mathbb{R}^N, \diamond, D_\lambda)$, of the previous theorem is a lifting of the sum-of-squares operator:

$$\mathcal{L} = \sum_{k=1}^m X_k^2$$

Assumptions:

Let X_1, \dots, X_m be linearly independent smooth vector fields on \mathbb{R}^n with:

◆ 同 ▶ → 三 ▶

Assumptions:

Let X_1, \dots, X_m be linearly independent smooth vector fields on \mathbb{R}^n with: 1. X_j for $j = 1, \dots, m$ is δ_{λ} -homogeneous of degree 1.

Assumptions:

Let X_1, \dots, X_m be linearly independent smooth vector fields on \mathbb{R}^n with:

- 1. X_j for $j = 1, \dots, m$ is δ_{λ} -homogeneous of degree 1.
- 2. Hörmander rank condition at zero:

$$\dim \left\{ X(0) \ : \ X \in \mathsf{Lie} \{ X_1, \cdots, X_m \} \right\} = n.$$

Assumptions:

Let X_1, \dots, X_m be linearly independent smooth vector fields on \mathbb{R}^n with:

- 1. X_j for $j = 1, \dots, m$ is δ_{λ} -homogeneous of degree 1.
- 2. Hörmander rank condition at zero:

$$\mathsf{dim}\left\{X(0) \ : \ X \in \mathsf{Lie}\{X_1, \cdots, X_m\}\right\} = n.$$

27 / 37

3. Define the sum-of-squares operator: $\mathcal{L} = \sum_{j=1}^{m} X_{j}^{2}$.

Assumptions:

Let X_1, \dots, X_m be linearly independent smooth vector fields on \mathbb{R}^n with:

- 1. X_j for $j = 1, \dots, m$ is δ_{λ} -homogeneous of degree 1.
- 2. Hörmander rank condition at zero:

$$\mathsf{dim}\left\{X(0) \ : \ X \in \mathsf{Lie}\{X_1, \cdots, X_m\}\right\} = n.$$

- 3. Define the sum-of-squares operator: $\mathcal{L} = \sum_{j=1}^{m} X_{j}^{2}$.
- 4. $G = (\mathbb{R}^N, \diamond, D_\lambda) =$ homogeneous Carnot group constructed above with sub-Laplacian:

$$\Delta_{\mathsf{sub},G} = Z_1^2 + \cdots + Z_m^2.$$

Homogeneous norm: $(\sigma_1, \dots, \sigma_n, \sigma_1^*, \dots, \sigma_p^*)$ hom. dimensions of D_{λ} :

$$h(x,\xi) = \sum_{j=1}^{n} |x_j|^{\frac{1}{\sigma_j}} + \sum_{k=1}^{p} |\xi_k|^{\frac{1}{\sigma_k^*}} \quad \text{where} \quad (x,\xi) \in \mathbb{R}^N = \mathbb{R}^n \times \mathbb{R}^p.$$

イロト イポト イヨト イヨト 二日

Homogeneous norm: $(\sigma_1, \dots, \sigma_n, \sigma_1^*, \dots, \sigma_p^*)$ hom. dimensions of D_{λ} :

$$h(x,\xi) = \sum_{j=1}^n |x_j|^{\frac{1}{\sigma_j}} + \sum_{k=1}^p |\xi_k|^{\frac{1}{\sigma_k^*}} \quad \text{where} \quad (x,\xi) \in \mathbb{R}^N = \mathbb{R}^n \times \mathbb{R}^p.$$

Theorem (G.B. Folland, 1973)

The sub-Laplacian $\Delta_{sub,G}$ admits a unique fundamental solution γ_G with:

Homogeneous norm: $(\sigma_1, \dots, \sigma_n, \sigma_1^*, \dots, \sigma_p^*)$ hom. dimensions of D_{λ} :

$$h(x,\xi) = \sum_{j=1}^n |x_j|^{\frac{1}{\sigma_j}} + \sum_{k=1}^p |\xi_k|^{\frac{1}{\sigma_k^*}} \quad \text{where} \quad (x,\xi) \in \mathbb{R}^N = \mathbb{R}^n \times \mathbb{R}^p.$$

Theorem (G.B. Folland, 1973)

The sub-Laplacian $\Delta_{sub,G}$ admits a unique fundamental solution γ_G with: (a) $\gamma_G \in C^{\infty}(\mathbb{R}^N \setminus \{0\}, \mathbb{R})$ and $\gamma_G > 0$ on $\mathbb{R}^N \setminus \{0\}$,

Homogeneous norm: $(\sigma_1, \dots, \sigma_n, \sigma_1^*, \dots, \sigma_p^*)$ hom. dimensions of D_{λ} :

$$h(x,\xi) = \sum_{j=1}^n |x_j|^{\frac{1}{\sigma_j}} + \sum_{k=1}^p |\xi_k|^{\frac{1}{\sigma_k^*}} \quad \text{where} \quad (x,\xi) \in \mathbb{R}^N = \mathbb{R}^n \times \mathbb{R}^p.$$

Theorem (G.B. Folland, 1973)

The sub-Laplacian $\Delta_{sub,G}$ admits a unique fundamental solution γ_G with: (a) $\gamma_G \in C^{\infty}(\mathbb{R}^N \setminus \{0\}, \mathbb{R})$ and $\gamma_G > 0$ on $\mathbb{R}^N \setminus \{0\}$, (b) $\gamma_G \in L^1_{loc}(\mathbb{R}^N)$ and γ_G vanishes at infinity,

Homogeneous norm: $(\sigma_1, \dots, \sigma_n, \sigma_1^*, \dots, \sigma_p^*)$ hom. dimensions of D_{λ} :

$$h(x,\xi) = \sum_{j=1}^n |x_j|^{\frac{1}{\sigma_j}} + \sum_{k=1}^p |\xi_k|^{\frac{1}{\sigma_k^*}} \quad \text{where} \quad (x,\xi) \in \mathbb{R}^N = \mathbb{R}^n \times \mathbb{R}^p.$$

Theorem (G.B. Folland, 1973)

The sub-Laplacian $\Delta_{sub,G}$ admits a unique fundamental solution γ_G with: (a) $\gamma_G \in C^{\infty}(\mathbb{R}^N \setminus \{0\}, \mathbb{R})$ and $\gamma_G > 0$ on $\mathbb{R}^N \setminus \{0\}$, (b) $\gamma_G \in L^1_{loc}(\mathbb{R}^N)$ and γ_G vanishes at infinity, (c) γ_G is D_{λ} -homogeneous of degree $2 - (\sum_{j=1}^n \sigma_j + \sum_{j=1}^p \sigma_j^*) = 2 - Q$ and:

$$\Delta_{\mathsf{sub},G}(\gamma_G) = -\delta_0.$$

Homogeneous norm: $(\sigma_1, \dots, \sigma_n, \sigma_1^*, \dots, \sigma_p^*)$ hom. dimensions of D_{λ} :

$$h(x,\xi) = \sum_{j=1}^n |x_j|^{\frac{1}{\sigma_j}} + \sum_{k=1}^p |\xi_k|^{\frac{1}{\sigma_k^*}} \quad \text{where} \quad (x,\xi) \in \mathbb{R}^N = \mathbb{R}^n \times \mathbb{R}^p.$$

Theorem (G.B. Folland, 1973)

The sub-Laplacian $\Delta_{sub,G}$ admits a unique fundamental solution γ_G with: (a) $\gamma_G \in C^{\infty}(\mathbb{R}^N \setminus \{0\}, \mathbb{R})$ and $\gamma_G > 0$ on $\mathbb{R}^N \setminus \{0\}$, (b) $\gamma_G \in L^1_{loc}(\mathbb{R}^N)$ and γ_G vanishes at infinity, (c) γ_G is D_{λ} -homogeneous of degree $2 - (\sum_{j=1}^n \sigma_j + \sum_{j=1}^p \sigma_j^*) = 2 - Q$ and:

$$\Delta_{\mathsf{sub},G}(\gamma_G) = -\delta_0.$$

(d) There is C > 0 with: $C^{-1}h^{2-Q}(x,\xi) \le \gamma_G(x,\xi) \le Ch^{2-Q}(x,\xi)$.

Fundamental solution of \mathcal{L}

$$\Gamma_{G}(x,\xi;y,\eta) = \gamma_{G}\Big((x,\xi)^{-1}\diamond(y,\eta)\Big), \quad (x,\xi) \neq (y,\eta).$$

-

3

Fundamental solution of ${\cal L}$

$$\Gamma_{G}(x,\xi;y,\eta) = \gamma_{G}\Big((x,\xi)^{-1}\diamond(y,\eta)\Big), \quad (x,\xi) \neq (y,\eta).$$

Theorem (S. Biagi, A. Bonfiglioli, 17)

Assume that $q = \sum_{j=1}^n \sigma_j > 2$ and $G = (\mathbb{R}^N, \diamond, D_\lambda) = as$ above.

Fundamental solution of \mathcal{L}

$$\Gamma_{G}(x,\xi;y,\eta) = \gamma_{G}\Big((x,\xi)^{-1}\diamond(y,\eta)\Big), \quad (x,\xi) \neq (y,\eta).$$

Theorem (S. Biagi, A. Bonfiglioli, 17) Assume that $q = \sum_{j=1}^{n} \sigma_j > 2$ and $G = (\mathbb{R}^N, \diamond, D_\lambda) = as$ above. (a) Then

$$\Gamma(x,y) := \int_{\mathbb{R}^p} \Gamma_G(x,0;y,\eta) d\eta \qquad (x \neq y)$$

is a fundamental solution for $\mathcal{L} = X_1^1 + \cdots + X_m^2$.

Fundamental solution of \mathcal{L}

$$\Gamma_{G}(x,\xi;y,\eta) = \gamma_{G}\Big((x,\xi)^{-1}\diamond(y,\eta)\Big), \quad (x,\xi) \neq (y,\eta).$$

Theorem (S. Biagi, A. Bonfiglioli, 17) Assume that $q = \sum_{j=1}^{n} \sigma_j > 2$ and $G = (\mathbb{R}^N, \diamond, D_\lambda) = as$ above. (a) Then

$$\Gamma(x,y) := \int_{\mathbb{R}^p} \Gamma_G(x,0;y,\eta) d\eta \qquad (x \neq y)$$

is a fundamental solution for $\mathcal{L} = X_1^1 + \cdots + X_m^2$. (b) There is a global estimate:

$$C^{-1} \int_{\mathbb{R}^p} h^{2-Q} \big((x,0)^{-1} \diamond (y,\eta) \big) d\eta \leq \mathsf{\Gamma}(x,y) \leq \\ \leq C \int_{\mathbb{R}^p} h^{2-Q} \big((x,0)^{-1} \diamond (y,\eta) \big) d\eta.$$
Theorem (S. Biagi, A. Bonfiglioli, 17) With the previous notations: $\Gamma(x, y)$ has the δ_{λ} -homogeneity:

 $Put: \quad \Gamma\Big(\delta_{\lambda}(x); \delta_{\lambda}(y)\Big) = \lambda^{2-q} \cdot \Gamma(x,y) \quad \text{where} \quad \mathbb{R}^n \ni x \neq y, \ \lambda > 0.$

Moreover $\Gamma(x, y)$ has the following properties:

Theorem (S. Biagi, A. Bonfiglioli, 17) With the previous notations: $\Gamma(x, y)$ has the δ_{λ} -homogeneity:

 $Put: \quad \Gamma\Big(\delta_{\lambda}(x); \delta_{\lambda}(y)\Big) = \lambda^{2-q} \cdot \Gamma(x, y) \quad \text{where} \quad \mathbb{R}^n \ni x \neq y, \ \lambda > 0.$

Moreover $\Gamma(x, y)$ has the following properties: (1) Symmetry: $\Gamma(x, y) = \Gamma(y, x)$ for all $x \neq y \in \mathbb{R}^n$,

Theorem (S. Biagi, A. Bonfiglioli, 17) With the previous notations: $\Gamma(x, y)$ has the δ_{λ} -homogeneity:

$$Put: \quad \Gamma\Big(\delta_{\lambda}(x); \delta_{\lambda}(y)\Big) = \lambda^{2-q} \cdot \Gamma(x,y) \quad \textit{where} \quad \mathbb{R}^n \ni x \neq y, \ \lambda > 0.$$

Moreover $\Gamma(x, y)$ has the following properties: (1) Symmetry: $\Gamma(x, y) = \Gamma(y, x)$ for all $x \neq y \in \mathbb{R}^n$, (2) $\Gamma(x, \cdot) = \Gamma(\cdot, x)$ is \mathcal{L} -harmonic on $\mathbb{R}^n \setminus \{x\}$,

Theorem (S. Biagi, A. Bonfiglioli, 17) With the previous notations: $\Gamma(x, y)$ has the δ_{λ} -homogeneity:

$$Put: \quad \Gamma\Big(\delta_{\lambda}(x); \delta_{\lambda}(y)\Big) = \lambda^{2-q} \cdot \Gamma(x, y) \quad \textit{where} \quad \mathbb{R}^n \ni x \neq y, \ \lambda > 0.$$

Moreover $\Gamma(x, y)$ has the following properties: (1) Symmetry: $\Gamma(x, y) = \Gamma(y, x)$ for all $x \neq y \in \mathbb{R}^n$, (2) $\Gamma(x, \cdot) = \Gamma(\cdot, x)$ is \mathcal{L} -harmonic on $\mathbb{R}^n \setminus \{x\}$, (3) $\Gamma(x, \cdot) = \Gamma(\cdot, x)$ vanishes at infinity uniformly on compact sets,

Theorem (S. Biagi, A. Bonfiglioli, 17) With the previous notations: $\Gamma(x, y)$ has the δ_{λ} -homogeneity:

$$Put: \quad \Gamma\Big(\delta_{\lambda}(x); \delta_{\lambda}(y)\Big) = \lambda^{2-q} \cdot \Gamma(x,y) \quad \textit{where} \quad \mathbb{R}^n \ni x \neq y, \ \lambda > 0.$$

Moreover $\Gamma(x, y)$ has the following properties: (1) Symmetry: $\Gamma(x, y) = \Gamma(y, x)$ for all $x \neq y \in \mathbb{R}^n$, (2) $\Gamma(x, \cdot) = \Gamma(\cdot, x)$ is \mathcal{L} -harmonic on $\mathbb{R}^n \setminus \{x\}$, (3) $\Gamma(x, \cdot) = \Gamma(\cdot, x)$ vanishes at infinity uniformly on compact sets, (4) Outside the diagonal Diag = $\{(x, x) : x \in \mathbb{R}^n\}$ in $\mathbb{R}^n \times \mathbb{R}^n$:

Theorem (S. Biagi, A. Bonfiglioli, 17) With the previous notations: $\Gamma(x, y)$ has the δ_{λ} -homogeneity:

$$Put: \quad \Gamma\Big(\delta_{\lambda}(x); \delta_{\lambda}(y)\Big) = \lambda^{2-q} \cdot \Gamma(x,y) \quad \textit{where} \quad \mathbb{R}^n \ni x \neq y, \ \lambda > 0.$$

Moreover $\Gamma(x, y)$ has the following properties: (1) Symmetry: $\Gamma(x, y) = \Gamma(y, x)$ for all $x \neq y \in \mathbb{R}^n$, (2) $\Gamma(x, \cdot) = \Gamma(\cdot, x)$ is \mathcal{L} -harmonic on $\mathbb{R}^n \setminus \{x\}$, (3) $\Gamma(x, \cdot) = \Gamma(\cdot, x)$ vanishes at infinity uniformly on compact sets, (4) Outside the diagonal Diag = $\{(x, x) : x \in \mathbb{R}^n\}$ in $\mathbb{R}^n \times \mathbb{R}^n$: $\Gamma \in L^1$ ($\mathbb{R}^n \times \mathbb{R}^n$) Diag $\cap C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ Diag)

 $\Gamma \in L^1_{\mathsf{loc}}(\mathbb{R}^n imes \mathbb{R}^n \setminus \mathsf{Diag}) \cap C^{\infty}(\mathbb{R}^n imes \mathbb{R}^n \setminus \mathsf{Diag}).$

イロト 不得 トイヨト イヨト ニヨー

Consider the Grushin operator on \mathbb{R}^2 with dilation $\delta_{\lambda}(x_1, x_2) = (\lambda x_1, \lambda^2 x_2)$:

 $\mathcal{L} = X_1^2 + X_2^2$ where $X_1 = \partial_{x_1}$, $X_2 = x_1 \partial_{x_2}$.

Consider the Grushin operator on \mathbb{R}^2 with dilation $\delta_{\lambda}(x_1, x_2) = (\lambda x_1, \lambda^2 x_2)$:

$$\mathcal{L} = X_1^2 + X_2^2$$
 where $X_1 = \partial_{x_1}, X_2 = x_1 \partial_{x_2}.$

• Carnot group: $G = (\mathbb{R}^3, \diamond, D_\lambda)$ with

 $D_{\lambda}(x_1, x_2, \xi) = (\lambda x_1, \lambda^2 x_2, \lambda \xi)$ and Q = 4.

Consider the Grushin operator on \mathbb{R}^2 with dilation $\delta_{\lambda}(x_1, x_2) = (\lambda x_1, \lambda^2 x_2)$:

$$\mathcal{L} = X_1^2 + X_2^2$$
 where $X_1 = \partial_{x_1}, \quad X_2 = x_1 \partial_{x_2}.$

• Carnot group: $G = (\mathbb{R}^3, \diamond, D_\lambda)$ with

 $D_{\lambda}(x_1, x_2, \xi) = (\lambda x_1, \lambda^2 x_2, \lambda \xi)$ and Q = 4.

• Product on G:

 $(x_1, x_2, \xi) \diamond (y_1, y_2, \eta) = (x_1 + y_1, x_2 + y_2 + x_1\eta, \xi + \eta).$

Consider the Grushin operator on \mathbb{R}^2 with dilation $\delta_{\lambda}(x_1, x_2) = (\lambda x_1, \lambda^2 x_2)$:

$$\mathcal{L} = X_1^2 + X_2^2$$
 where $X_1 = \partial_{x_1}, \quad X_2 = x_1 \partial_{x_2}.$

• Carnot group: $G = (\mathbb{R}^3, \diamond, D_\lambda)$ with

 $D_{\lambda}(x_1, x_2, \xi) = (\lambda x_1, \lambda^2 x_2, \lambda \xi)$ and Q = 4.

• Product on G:

 $(x_1, x_2, \xi) \diamond (y_1, y_2, \eta) = (x_1 + y_1, x_2 + y_2 + x_1\eta, \xi + \eta).$

• Liftings of $X_1 \to Z_1 = \partial_{x_1}$ and $X_2 \to Z_2 = x_1 \partial_{x_2} + \partial_{\xi}$ and

 $\mathcal{L} = X_1^2 + X_2^2$ lifts to $\Delta_{sub} = Z_1^2 + Z_2^2$.

3

<ロ> (日) (日) (日) (日) (日)

• Fundamental solution of Δ_{sub} for $(x, \xi) \neq (0, 0)$:

$$\Gamma_{\Delta_{
m sub}}(x,\xi) = rac{c}{\sqrt{(x_1^2+\xi^2)^2+16(x_2-rac{1}{2}x_1\xi)^2}}.$$

3

Image: A mathematical states and a mathem

• Fundamental solution of Δ_{sub} for $(x, \xi) \neq (0, 0)$:

$$\Gamma_{\Delta_{\rm sub}}(x,\xi) = \frac{c}{\sqrt{(x_1^2 + \xi^2)^2 + 16(x_2 - \frac{1}{2}x_1\xi)^2}}$$

Conclusion

The fundamental solution of \mathcal{L} is given by the fiber integral:

$$\begin{split} \mathsf{F}(x_1, x_2; y_1, y_2) &= \\ &= c \int_{\mathbb{R}} \frac{d\eta}{\sqrt{((x_1 - y_1)^2 + \eta^2)^2 + 4(2x_2 - 2y_2 + \eta(x_1 + y_1))^2}}. \end{split}$$

< 47 ▶ <

Higher step groups and Grushin type operators

Example: Consider the Engel group \mathcal{E}_4 as a matrix group

$$\mathcal{E}_4 = \left\{ \left(\begin{array}{rrrr} 1 & x & \frac{x^2}{2} & z \\ 0 & 1 & x & w \\ 0 & 0 & 1 & y \\ 0 & 0 & 0 & 1 \end{array} \right) : x, y, w, z \in \mathbb{R} \right\} \subset \mathbb{R}^{4 \times 4}.$$

< /⊒ > <

Higher step groups and Grushin type operators

Example: Consider the Engel group \mathcal{E}_4 as a matrix group

$$\mathcal{E}_4 = \left\{ \begin{pmatrix} 1 & x & \frac{x^2}{2} & z \\ 0 & 1 & x & w \\ 0 & 0 & 1 & y \\ 0 & 0 & 0 & 1 \end{pmatrix} : x, y, w, z \in \mathbb{R} \right\} \subset \mathbb{R}^{4 \times 4}.$$

The corresponding Lie algebra e_4 has the following bracket relations:

[X, Y] = W and [X, W] = Z

Higher step groups and Grushin type operators

Example: Consider the Engel group \mathcal{E}_4 as a matrix group

$$\mathcal{E}_4 = \left\{ \left(\begin{array}{rrrr} 1 & x & \frac{x^2}{2} & z \\ 0 & 1 & x & w \\ 0 & 0 & 1 & y \\ 0 & 0 & 0 & 1 \end{array} \right) : x, y, w, z \in \mathbb{R} \right\} \subset \mathbb{R}^{4 \times 4}.$$

The corresponding Lie algebra e_4 has the following bracket relations:

[X, Y] = W and [X, W] = Z

A 3-step Carnot group

The Engel group \mathcal{E}_4 is the lowest dimensional Carnot group of step 3.

(4回) (三) (三) (三) (0) (0)

Calculate the left-invariant vector fields X and Y on \mathcal{E}_4^{3} .

$$X := \frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial w} + \left(\frac{w}{2} - \frac{xy}{12}\right) \frac{\partial}{\partial z},$$
$$Y := \frac{\partial}{\partial y} + \frac{x}{2} \frac{\partial}{\partial w} - \frac{x^2}{12} \frac{\partial}{\partial z}.$$

³Recall: one uses the Baker-Campbell-Hausdorff formula $\rightarrow \langle @ \rightarrow \langle @ \rightarrow \langle @ \rightarrow \rangle \rangle$

W. Bauer (Leibniz U. Hannover) Fundamental solution of degenerate operators

Calculate the left-invariant vector fields X and Y on \mathcal{E}_4^{3} .

$$X := \frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial w} + \left(\frac{w}{2} - \frac{xy}{12}\right) \frac{\partial}{\partial z},$$
$$Y := \frac{\partial}{\partial y} + \frac{x}{2} \frac{\partial}{\partial w} - \frac{x^2}{12} \frac{\partial}{\partial z}.$$

Lemma

The vector fields X and Y are skew-symmetric on \mathcal{E}_4 . They span a bracket generating distribution:

$$\mathcal{H} := \operatorname{span}\Big\{X, Y\Big\}.$$

Calculate the left-invariant vector fields X and Y on \mathcal{E}_4 ³.

$$X := \frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial w} + \left(\frac{w}{2} - \frac{xy}{12}\right) \frac{\partial}{\partial z},$$
$$Y := \frac{\partial}{\partial y} + \frac{x}{2} \frac{\partial}{\partial w} - \frac{x^2}{12} \frac{\partial}{\partial z}.$$

Lemma

The vector fields X and Y are skew-symmetric on \mathcal{E}_4 . They span a bracket generating distribution:

$$\mathcal{H} := \operatorname{span} \Big\{ X, Y \Big\}.$$

Since W = [X, Y] and Z = [X, W] = [X, [X, Y]].

³Recall: one uses the Baker-Campbell-Hausdorff formula $\rightarrow \langle \neg \rangle \rightarrow \langle \neg \rangle \rightarrow \langle \neg \rangle \rightarrow \langle \neg \rangle$

Calculate the left-invariant vector fields X and Y on \mathcal{E}_4 ³.

$$X := \frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial w} + \left(\frac{w}{2} - \frac{xy}{12}\right) \frac{\partial}{\partial z},$$
$$Y := \frac{\partial}{\partial y} + \frac{x}{2} \frac{\partial}{\partial w} - \frac{x^2}{12} \frac{\partial}{\partial z}.$$

Lemma

The vector fields X and Y are skew-symmetric on \mathcal{E}_4 . They span a bracket generating distribution:

$$\mathcal{H} := \operatorname{span} \Big\{ X, Y \Big\}.$$

Since W = [X, Y] and Z = [X, W] = [X, [X, Y]].

$$\Delta_{\rm sub}^{\mathcal{E}_4} = -\frac{1}{2} \Big\{ X^2 + Y^2 \Big\} = Sub-Laplacian.$$

³Recall: one uses the Baker-Campbell-Hausdorff formula $\rightarrow \langle \mathcal{D} \rangle \land \mathbb{R} \rightarrow \langle \mathbb{R} \rangle$

W. Bauer (Leibniz U. Hannover) Fundamental solution of degenerate operators

Consider the sub-group

$$\mathcal{N} = \{ sX + tW : s, t \in \mathbb{R} \} \cong \mathbb{R}^2$$

of $\mathcal{E}_4 \cong \mathfrak{e}_4$. One obtains a fiber bundle

$$\rho: \mathcal{E}_4 \longrightarrow \mathcal{N} \setminus \mathcal{E}_4 \cong \mathbb{R}^2, \quad \text{where} \quad \rho(x, y, w, z) = \left(x, z + \frac{xw}{2} + \frac{yx^2}{6}\right).$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3. 3

Consider the sub-group

$$\mathcal{N} = \{sX + tW : s, t \in \mathbb{R}\} \cong \mathbb{R}^2$$

of $\mathcal{E}_4 \cong \mathfrak{e}_4$. One obtains a fiber bundle

$$\rho: \mathcal{E}_4 \longrightarrow \mathcal{N} \setminus \mathcal{E}_4 \cong \mathbb{R}^2, \quad \text{where} \quad \rho(x, y, w, z) = \left(x, z + \frac{xw}{2} + \frac{yx^2}{6}\right).$$

Observation

The vector fields X and Y descend via $d\rho$ to $\mathcal{N} \setminus \mathcal{E}_4$. We obtain the Grushin type operator

$$\mathcal{G} = -d\rho(X)^2 - d\rho(Y)^2 = -\frac{\partial^2}{\partial u^2} - \frac{u^4}{4}\frac{\partial^2}{\partial v^2}.$$

< /□ > < 三

3

$$\mathcal{L}_{\eta} := -\frac{\partial^2}{\partial u^2} - \frac{u^4}{4}\eta^2 =$$
 "quartic oscillator" if $\eta \neq 0$.

These operators are elliptic if $\eta \neq 0$.

Calculating the heat kernel

< 🗇 🕨 🔸

$$\mathcal{L}_{\eta} := -\frac{\partial^2}{\partial u^2} - \frac{u^4}{4}\eta^2 =$$
"quartic oscillator" if $\eta \neq 0$.

These operators are elliptic if $\eta \neq 0$.

Calculating the heat kernel

 We could obtain the heat kernel of G from the heat kernel of Δ^{ε4}_{sub} via a fiber integration:

< 🗇 🕨 🔸

$$\mathcal{L}_{\eta} := -\frac{\partial^2}{\partial u^2} - \frac{u^4}{4}\eta^2 =$$
"quartic oscillator" if $\eta \neq 0$.

These operators are elliptic if $\eta \neq 0$.

Calculating the heat kernel

 We could obtain the heat kernel of G from the heat kernel of Δ^{ε4}_{sub} via a fiber integration:

More precisely: Let $\Phi : \mathcal{N} \times (\mathcal{N} \setminus \mathcal{E}_4) \longrightarrow \mathcal{E}_4$, be a trivialization of the bundle ^{*a*} then:

▲ @ ▶ < ∃ ▶</p>

$$\mathcal{L}_{\eta} := -\frac{\partial^2}{\partial u^2} - \frac{u^4}{4}\eta^2 =$$
"quartic oscillator" if $\eta \neq 0$.

These operators are elliptic if $\eta \neq 0$.

Calculating the heat kernel

 We could obtain the heat kernel of G from the heat kernel of Δ^{ε4}_{sub} via a fiber integration:

More precisely: Let $\Phi : \mathcal{N} \times (\mathcal{N} \setminus \mathcal{E}_4) \longrightarrow \mathcal{E}_4$, be a trivialization of the bundle ^{*a*} then:

$$\mathcal{K}^{\mathcal{G}}(t,
ho(x),y) = \int_{\mathbb{R}^2} \mathcal{K}^{\Delta^{\mathcal{E}_4}_{\mathrm{sub}}}(t,x,\Phi(u,y)) \, du.$$

^atrivialization means: $\rho \circ \Phi(x, y) = x$.

Thank you for your attention!

