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Fundamental solution
Consider a linear PDO 1 P on Rn of order d , i.e.

P =
∑
|α|≤d

aα(x)Dα
x where aα(x) ∈ C∞(Rn,R)

where we use the standard notation

Dα
x =

∂|α|

∂xα1
1 · · · ∂xαn

n
for α ∈ Nn

0.

Definition

Call Γ : {(x , y) ∈ Rn ×Rn : x 6= y} → R a global fundamental solution if

For every x ∈ Rn we have Γ(x , ·) ∈ L1
loc(Rn).

For every ϕ ∈ C∞0 (Rn)∫
Rn

Γ(x , y)P∗ϕ(y)dy = −ϕ(x).

1PDO=partial differential operator
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Fundamental solution

Remarks

The defining equation of the fundamental solution is shortly written:

PΓx = −δx = Dirac distribution supported at x .

Existence of the fundamental solution is not always guaranteed.
Showing existence (or non-existence) can be complicated.

In general, fundamental solutions are not unique, e.g. one may add a
P-harmonic function h i.e.

Ph = 0

to a fundamental solution and gets another one.
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From the heat kernel to the inverse

Let L be a linear partial differential operator on Rn
x (smooth coefficients).

Definition

The corresponding heat operator on Rn
x × Rt is defined by H = L − ∂t .

Assumption:

H admits a heat kernel {pt(x , y)}t>0 which is integrable with respect to t.
In particular:

Lypt(x , y) = ∂tpt(x , y).

Observation: At least formally, a fundamental solution of L is given by

Γ(x , y) =

∫ ∞
0

pt(x , y)dt

(can be made precise in many cases).
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From the heat kernel to the inverse

In fact (formal calculation): Let ϕ ∈ C∞0 (Rn), then∫
Rn

Γ(x , y)L∗ϕ(y)dy =

∫
Rn

∫ ∞
0

pt(x , y)dtL∗ϕ(y)dy

=

∫
Rn

∫ ∞
0
Lypt(x , y)dtϕ(y)dy

=

∫
Rn

∫ ∞
0

∂tpt(x , y)dtϕ(y)dy

=

∫
Rn

[
pt(x , y)

]∞
0
ϕ(y)dy

= − lim
t→0

∫
Rn

pt(x , y)ϕ(y)dy = −ϕ(y).

Here we have assumed that limt→∞ pt(x , y) = 0.
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Reducing the dimension
Here is another example:

Consider the Laplace operator ∆n on Rn with n > 2 and let p ≥ 1.

∆n =
n∑

j=1

∂2

∂x2
j

and ∆n+p = ∆n +

n+p∑
j=n+1

∂2

∂x2
j

.

Then ∆n has the fundamental solution

pn(x , y) := cn‖x − y‖2−n.

Observation

We can consider ∆n+p for p ≥ 1 as a

”lifting of ∆n”,

i.e. it acts on functions only depending on the variable x1, · · · , xn as ∆n.

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 7 / 37



Reducing the dimension
Here is another example:

Consider the Laplace operator ∆n on Rn with n > 2 and let p ≥ 1.

∆n =
n∑

j=1

∂2

∂x2
j

and ∆n+p = ∆n +

n+p∑
j=n+1

∂2

∂x2
j

.

Then ∆n has the fundamental solution

pn(x , y) := cn‖x − y‖2−n.

Observation

We can consider ∆n+p for p ≥ 1 as a

”lifting of ∆n”,

i.e. it acts on functions only depending on the variable x1, · · · , xn as ∆n.

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 7 / 37



Reducing dimension

Lemma

We obtain the fundamental solution of ∆n from the fundamental solution
of ∆n+p via a ”fiber integration”.

c

(√
x2

1 + · · ·+ x2
n

)2−n
=

=

∫
Rp

(√
x2

1 + · · ·+ x2
n + t2

1 + · · ·+ t2
p

)2−n−p
dt1 · · · dtp = (∗).

Proof: The change of variables t = ‖x‖τ with τ ∈ Rp and x 6= 0 gives:

(∗) = ‖x‖p
∫
Rp

(
‖x‖2 + τ2‖x‖2

) 2−n−p
2

dτ

= ‖x‖2−n
∫
Rp

(1 + τ2)
2−n−p

2 dτ.

�
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Lifting

We describe recent work by S. Biagi and A. Bonfiglioli: 2

Let P be a PDO with smooth coefficients.

Definition

We call a PDO Plift on Rn × Rp a lifting of P if

(a) Plift has smooth coefficients depending on (x , ξ) ∈ Rn × Rp,

(b) For every f ∈ C∞(R):

Plift(f ◦ π)(x , ξ) = (Pf )(x) where (x , ξ) ∈ Rn × Rp.

Here π : Rn × Rp → Rn is the projection to the x-coordinates:

π(x , y) = x .

2S. Biagi, A. Bonfiglioli, The existence of a global fundamental solution for
homogeneous Hörmander operators via a global lifting method, Proc. London Math.
Soc. (3), 114 (2017), 855-889.
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Example and equivalent formulation
Observation: Plift is a lifting of P if and only if

Plift = P + R where R =
∑
β 6=0

rα,β(x , ξ)Dα
x Dβ

ξ .

Example

Consider the Grushin operator on R2:

G :=
(
∂x1

)2
+
(
x1∂x2

)2
.

A lifting of G to R3 is given by:

G̃ =
(
∂x1

)2
+
(
∂ξ + x1∂x2

)2
= G + ∂2

ξ + 2x1∂x2∂ξ︸ ︷︷ ︸
R

.

Remark: G̃ is up to a change of variables the sub-Laplacian of the
Heisenberg group. Its heat kernel is known do to the group structure.
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Questions

Assumption

Let Plift be a lifting of P and Plift admits a global fundamental solution Γ.

One may ask:

Does P admit a fundamental solution Γ̃?

If yes, can we obtain Γ̃ by ”via integration over some variables” in Γ?

If we do not know Γ explicitly but if we have estimates on Γ. Can we
use them to obtain estimates on Γ̃?

Why should be lift at all? Adding more variables should make live
more complicated.
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Homogeneous group and dilations

Let G = (Rn, ∗) be a nilpotent Lie group.

Definition (homogeneous group)

We call G a homogeneous group, it there is σ = (σ1, · · · , σn) ∈ Rn with

1 ≤ σ1 ≤ σ2 ≤ · · · ≤ σn

such that the dilation δλ : G → G with

δλ(x1, · · · , xn) =
(
λσ1x1, · · · , λσnxn

)
is an automorphism of G for every λ > 0, i.e.

δλ(g) ∗ δλ(h) = δλ
(
g ∗ h

)
.

Remark:

The dilations {δλ}λ form a one-parameter group of automorphisms.
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The homogeneous structure of the Heisenberg group

Example: Consider again the Heisenberg group H3
∼= R3 with dilation:

δλ(x1, x2, x3) := (λx1, λx2, λ
2x3) with (λ > 0).

Then we have

δλ(x1, x2, x3) ∗ δλ(y1, y2, y3)

=
(
λx1, λx2, λ

2x3

)
∗
(
λy1, λy2, λ

2y3

)
=
(
λ(x1 + y1), λ(x2 + y2), λ2(x3 + y3) +

1

2

[
λx1λy2 − λy1λx2

]
︸ ︷︷ ︸

=λ2
(

(x3+y3)+ 1
2

[
x1y2−y1x2

])
)

= δλ

(
(x1, x2, x3) ∗ (y1, y2, y3)

)
.

Therefore H3 is a homogeneous Lie group with σ = (1, 1, 2).
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∼= R3 with dilation:

δλ(x1, x2, x3) := (λx1, λx2, λ
2x3) with (λ > 0).

Then we have

δλ(x1, x2, x3) ∗ δλ(y1, y2, y3)
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(
λx1, λx2, λ

2x3

)
∗
(
λy1, λy2, λ

2y3

)
=
(
λ(x1 + y1), λ(x2 + y2), λ2(x3 + y3) +

1

2

[
λx1λy2 − λy1λx2

]
︸ ︷︷ ︸

=λ2
(

(x3+y3)+ 1
2

[
x1y2−y1x2

])
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Homogeneous vector fields

Having dilations {δλ}λ we can define δλ-homogeneous vector fields:

Definition

Let X1, · · · ,Xm be C∞-vector fields in G = (Rn, ∗). Then we call Xj

homogeneous of degree 1 if:

Xi

(
f ◦ δλ

)
= λ

(
Xi f
)
◦ δλ ∀ λ > 0, ∀ f ∈ C∞(Rn,R).

Further assumptions: Assume that X1, · · · ,Xm

are linearly independent as linear differential operators,

fulfill the Hörmander bracket generating condition, i.e for all g ∈ G :

dim
{

X (g) : X ∈ Lie{X1, · · · ,Xm}
}

= n.

Note: If X and Y are δλ-homogeneous of degree d1 and d2, respectively.
Then [X ,Y ] is δλ-homogeneous of degree d1 + d2.
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Example:

Consider again the Grushin operator G on R2 defined by

G =
(
∂x1

)2
+
(
x1∂x2

)2
= X 2

1 + X 2
2 ,

On R2 define the dilation δλ(x1, x2) :=
(
λx1, λ

2x2

)
.

Observation

The bracket generating condition is fulfilled with m = 2, since

dim
{

X1 = ∂x1 ,X2 = x1∂x2 ,
[
X1,X2

]
= ∂x2

}
= 3.

X1 and X2 are homogeneous of degree 1: Let g = (x1, x2), then

X1

(
f ◦ δλ

)
(g) = ∂x1 [f (λx1, λx2)] = λ(∂x1 f )(λx1, λ

2x2) = λ(X1f ) ◦ δλ(g),

X2

(
f ◦ δλ

)
(g) = x1∂x2 [f (λx1, λ

2x2)] = λ(λx1)[∂x2 f ] ◦ δλ(g) = λ(X2f ) ◦ δλ(g).
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From homogeneous vector fields to a nilpotent Lie algebra

Let X = {X1, · · · ,Xm} be homogeneous vector fields on Rn with the
previous assumptions. We consider the Lie algebra generated by X :

a : = Lie
{

X1, · · · ,Xm

}
= smallest Lie subalgebra of vector fields on Rn containing X .

The δλ-homogeneity of the vector fields implies the following:

Lemma

The Lie algebra a is finite dimensional and it corresponds to a Carnot
group

a = a1 ⊕ a2 ⊕ · · · ⊕ ar and

{[
a1, ai−1

]
= ai , 2 ≤ i ≤ r ,[

a1, ar
]

= {0}.

Here, the ”first level” is a1 = span{X1, · · · ,Xm}.
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From the nilpotent Lie algebra to a Carnot group

Reminder:

We can equip a with a group structure via exponential coordinates: Via
the Campbell-Baker-Hausdorff formula the product is:

X � Y = X + Y +
1

2
[X ,Y ] +

1

12

[
X , [X ,Y ]

]
− 1

12

[
Y , [X ,Y ]

]
+ · · · (finite).

Summing up:

Lemma

Let N := dim a. Then G = (a ∼= RN , �) is a Carnot group with Lie algebra
(isomorphic to) a. Moreover,

a = Lie
{

X1, · · · ,Xm

}
is a Lie algebra of smooth vector fields on Rn (we can ”exponentiate”).

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 17 / 37



From the nilpotent Lie algebra to a Carnot group

Reminder:

We can equip a with a group structure via exponential coordinates: Via
the Campbell-Baker-Hausdorff formula the product is:

X � Y = X + Y +
1

2
[X ,Y ] +

1

12

[
X , [X ,Y ]

]
− 1

12

[
Y , [X ,Y ]

]
+ · · · (finite).

Summing up:

Lemma

Let N := dim a. Then G = (a ∼= RN , �) is a Carnot group with Lie algebra
(isomorphic to) a. Moreover,

a = Lie
{

X1, · · · ,Xm

}
is a Lie algebra of smooth vector fields on Rn (we can ”exponentiate”).

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 17 / 37



A family of dilations on a ∼= G
Recall that a has a stratification

a = a1 ⊕ a2 ⊕ · · · ⊕ ar with [a1, ai−1] = ai .

Definition

For each λ > 0 define a dilation {δaλ}λ on a ∼= RN via the decomposition
of elements:

δaλ(X ) =
r∑

k=1

λkak where X =
r∑

k=1

ak and ak ∈ ak .

Lemma: The dilation δaλ defines a group automorphism of (G = a, �).

Proof: It is sufficient to show that δaλ induces a Lie algebra automorphism:

[
δaλ(X ), δaλ(Y )

]
=
[ r∑

j=1

λjaj ,
k∑
`=1

λ`b`
]

=
r∑

j,`=1

λj+` [aj , a`]︸ ︷︷ ︸
∈aj+`

= δaλ
(
[X ,Y ]

)
.

�.
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Reminder: Sub-Riemannian structure on a Carnot group

Definition

We call (G ∼= a, �, δaλ) a homogeneous Carnot group.

Next: Equip (G ∼= a, �) with a Sub-Riemannian structure:

Choose a linear basis of a = a1 ⊕ a2 ⊕ · · · ⊕ ar as follows:

take the basis [X1, · · · ,Xm] of the first level a1.

for each r = 2, · · · ,m take a basis [X
(1)
1 , · · ·X (r)

`r
] of ar .

Definition

We call the basis[
X1, · · · ,Xm,X

(2)
1 , · · ·X (2)

`2
, · · · ,X (r)

1 , · · · ,X (r)
`r

]
an adapted basis of the Lie algebra a. This basis gives the concrete
identification between a and RN .
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Sub-Riemannian structure on the Carnot group

Identifications

Via the above basis we make the following identifications:

Carnot group: G ∼= a ←→ RN ,

dilation on G : δaλ ←→ Dλ(a) =
(
λs1a1, · · · , λsN aN

)
, a ∈ RN .

The exponents sj in the dilation are given by:

(s1, · · · , sN) =
(

1, · · · , 1︸ ︷︷ ︸
=dim a1

, 2, · · · , 2︸ ︷︷ ︸
dim a2

, · · · , r , · · · , r︸ ︷︷ ︸
dim ar

)
.

Identify [X1, · · · ,Xm] with left-invariant vector fields [J1, · · · , Jm] on the
homogeneous Carnot group (RN , �,Dλ). Then

H = span
{

J1, · · · , Jm
}
⊂ TRN

is a bracket generating distribution in the tangent bundle of RN .
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Sub-Laplacian on RN

Observation

The homogeneous Carnot group (RN , �,Dλ) is equipped via H with a
Sub-Riemannian structure. Its (intrinsic) Sub-Laplacian has the form:

∆sub,G = J2
1 + · · ·+ J2

m,

and defines a hypo-elliptic operator with underlying group structure.

Question: Now we have constructed two ”sum-of-squares operators”:

L = X 2
1 + · · ·+ X 2

m (on Rn)

∆sub,G = J2
1 + · · ·+ J2

m, (on G = RN where N > n).

What is the relation between these operators?

Can we use knowledge on ∆sub,G to study L?
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From the Carnot group back to Rn

Let X ∈ a = Lie{X1, · · · ,Xm} be a δλ-homogeneous vector field on Rn.
Consider the induced integral curve starting in 0 ∈ Rn:

ΨX
t : R→ Rn with

{
d
dt ΨX

t = X ◦ΨX
t , t ∈ R

ΨX
0 = 0.

(∗)

On the completeness

Based on the δλ-homogeneity one can show that all vector fields X ∈ a are
complete, i.e. the induced flow (∗) exists for all times t ∈ R.

Consider the following map:

π : RN → Rn, π(a) =
(

ΨXa
t (0)

)
|t=1

,

where a 3 Xa ←→ a ∈ RN in our identification above.

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 22 / 37



From the Carnot group back to Rn

Let X ∈ a = Lie{X1, · · · ,Xm} be a δλ-homogeneous vector field on Rn.
Consider the induced integral curve starting in 0 ∈ Rn:

ΨX
t : R→ Rn with

{
d
dt ΨX

t = X ◦ΨX
t , t ∈ R

ΨX
0 = 0.

(∗)

On the completeness

Based on the δλ-homogeneity one can show that all vector fields X ∈ a are
complete, i.e. the induced flow (∗) exists for all times t ∈ R.

Consider the following map:

π : RN → Rn, π(a) =
(

ΨXa
t (0)

)
|t=1

,

where a 3 Xa ←→ a ∈ RN in our identification above.

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 22 / 37



From the Carnot group back to Rn

Let X ∈ a = Lie{X1, · · · ,Xm} be a δλ-homogeneous vector field on Rn.
Consider the induced integral curve starting in 0 ∈ Rn:

ΨX
t : R→ Rn with

{
d
dt ΨX

t = X ◦ΨX
t , t ∈ R

ΨX
0 = 0.

(∗)

On the completeness

Based on the δλ-homogeneity one can show that all vector fields X ∈ a are
complete, i.e. the induced flow (∗) exists for all times t ∈ R.

Consider the following map:

π : RN → Rn, π(a) =
(

ΨXa
t (0)

)
|t=1

,

where a 3 Xa ←→ a ∈ RN in our identification above.

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 22 / 37



Lifting theorem by Folland

Theorem (Folland, 1977)

The map π : RN → Rn has the following properties:

for all λ > 0 and all a ∈ RN we have: a

π
(

Dλ(a)
)

= δλ
(
π(a)

)
.

π is a polynomial map.

If J1, · · · , JN are the left-invariant vector fields which correspond to
the adapted basis of a ∼= RN , then

dπ(Ji )(a) = Xi

(
π(a)

)
, ∀ a ∈ RN ,

where Xi is in the adapted basis of a.

aG.B. Folland, on the Rothschild-Stein lifting theorem, Comm. Partial
Differential Equations 2 (1977), 161-207.
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Reminder: lifting of an operator

Definition

We call a PDO Plift on Rn × Rp a lifting of P if

(a) Plift has smooth coefficients depending on (x , ξ) ∈ Rn × Rp,

(b) For every f ∈ C∞(R):

Plift(f ◦ π)(x , ξ) = (Pf )(x) where (x , ξ) ∈ Rn × Rp.

Here π : Rn × Rp → Rn is the projection to the x-coordinates:

π(x , y) = x .

Next:

Can one choose coordinates in Folland’s lifting theorem in such a way that

π : RN → Rn

becomes just the projection onto the first n coordinates of a vector in RN .
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Lifting sums of squares

Theorem (S. Biagi, A. Bonfiglioli, 2017)

Let X1, · · · ,Xm be δλ-homogeneous of degree 1 vector fields on Rn with

N = dim Lie
{

X1, · · · ,Xm

}
.

Then there is:

a homogeneous Carnot group G = (RN , �,Dλ) with m generators and
nilpotent of step r .

a system {Z1, · · · ,Zm} of Lie generators of the Lie algebra a of G
such that

Zi is a lifting of Xi

via the projection π : RN → Rn onto the first n variables.

Remark: One can construct the lifting explicitly!
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Lifting sums of squares

With the above notation we have:

Theorem (S. Biagi, A. Bonfiglioli, 2017)

The sub-Laplacian
∆sub,G = Z 2

1 + · · ·+ Z 2
m

on the homogeneous Carnot group (RN , �,Dλ), of the previous theorem is
a lifting of the sum-of-squares operator:

L =
m∑

k=1

X 2
k .
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Fundamental solution

Assumptions:

Let X1, · · · ,Xm be linearly independent smooth vector fields on Rn with:

1. Xj for j = 1, · · · ,m is δλ-homogeneous of degree 1.

2. Hörmander rank condition at zero:

dim
{

X (0) : X ∈ Lie
{

X1, · · · ,Xm

}}
= n.

3. Define the sum-of-squares operator: L =
∑m

j=1 X 2
j .

4. G = (RN , �,Dλ) = homogeneous Carnot group constructed above
with sub-Laplacian:

∆sub,G = Z 2
1 + · · ·+ Z 2

m.
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2. Hörmander rank condition at zero:

dim
{

X (0) : X ∈ Lie
{

X1, · · · ,Xm

}}
= n.

3. Define the sum-of-squares operator: L =
∑m

j=1 X 2
j .

4. G = (RN , �,Dλ) = homogeneous Carnot group constructed above
with sub-Laplacian:

∆sub,G = Z 2
1 + · · ·+ Z 2

m.

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 27 / 37



Fundamental solution

Assumptions:

Let X1, · · · ,Xm be linearly independent smooth vector fields on Rn with:

1. Xj for j = 1, · · · ,m is δλ-homogeneous of degree 1.

2. Hörmander rank condition at zero:

dim
{

X (0) : X ∈ Lie
{

X1, · · · ,Xm

}}
= n.

3. Define the sum-of-squares operator: L =
∑m

j=1 X 2
j .

4. G = (RN , �,Dλ) = homogeneous Carnot group constructed above
with sub-Laplacian:

∆sub,G = Z 2
1 + · · ·+ Z 2

m.

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 27 / 37



Fundamental solution

Assumptions:

Let X1, · · · ,Xm be linearly independent smooth vector fields on Rn with:

1. Xj for j = 1, · · · ,m is δλ-homogeneous of degree 1.
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A theorem by Folland
Homogeneous norm: (σ1, · · · , σn, σ∗1, · · · , σ∗p) hom. dimensions of Dλ:

h(x , ξ) =
n∑

j=1

|xj |
1
σj +

p∑
k=1

|ξk |
1
σ∗
k where (x , ξ) ∈ RN = Rn × Rp.

Theorem (G.B. Folland, 1973)

The sub-Laplacian ∆sub,G admits a unique fundamental solution γG with:

(a) γG ∈ C∞(RN \ {0},R) and γG > 0 on RN \ {0},
(b) γG ∈ L1

loc(RN) and γG vanishes at infinity,

(c) γG is Dλ-homogeneous of degree 2− (
∑n

j=1 σj +
∑p

j=1 σ
∗
j ) = 2− Q

and:
∆sub,G

(
γG
)

= −δ0.

(d) There is C > 0 with: C−1h2−Q(x , ξ) ≤ γG (x , ξ) ≤ Ch2−Q(x , ξ).
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Fundamental solution of L

ΓG (x , ξ; y , η) = γG

(
(x , ξ)−1 � (y , η)

)
, (x , ξ) 6= (y , η).

Theorem (S. Biagi, A. Bonfiglioli, 17)

Assume that q =
∑n

j=1 σj > 2 and G = (RN , �,Dλ) = as above.

(a) Then

Γ(x , y) :=

∫
Rp

ΓG

(
x , 0; y , η

)
dη (x 6= y)

is a fundamental solution for L = X 1
1 + · · ·+ X 2

m.

(b) There is a global estimate:

C−1

∫
Rp

h2−Q((x , 0)−1 � (y , η)
)
dη ≤ Γ(x , y) ≤

≤ C

∫
Rp

h2−Q((x , 0)−1 � (y , η)
)
dη.
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Fundamental solution of L (continued)

Theorem (S. Biagi, A. Bonfiglioli, 17)

With the previous notations: Γ(x , y) has the δλ-homogeneity:

Put : Γ
(
δλ(x); δλ(y)

)
= λ2−q · Γ(x , y) where Rn 3 x 6= y , λ > 0.

Moreover Γ(x , y) has the following properties:

(1) Symmetry: Γ(x , y) = Γ(y , x) for all x 6= y ∈ Rn,

(2) Γ(x , ·) = Γ(·, x) is L-harmonic on Rn \ {x},
(3) Γ(x , ·) = Γ(·, x) vanishes at infinity uniformly on compact sets,

(4) Outside the diagonal Diag = {(x , x) : x ∈ Rn} in Rn × Rn:

Γ ∈ L1
loc(Rn × Rn \ Diag) ∩ C∞(Rn × Rn \ Diag).
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Example
Consider the Grushin operator on R2 with dilation δλ(x1, x2) = (λx1, λ

2x2):

L = X 2
1 + X 2

2 where X1 = ∂x1 , X2 = x1∂x2 .

Carnot group: G = (R3, �,Dλ) with

Dλ(x1, , x2, ξ) = (λx1, λ
2x2, λξ) and Q = 4.

Product on G :

(x1, x2, ξ) � (y1, y2, η) =
(
x1 + y1, x2 + y2 + x1η, ξ + η

)
.

Liftings of X1 → Z1 = ∂x1 and X2 → Z2 = x1∂x2 + ∂ξ and

L = X 2
1 + X 2

2 lifts to ∆sub = Z 2
1 + Z 2

2 .
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Example

Fundamental solution of ∆sub for (x , ξ) 6= (0, 0):

Γ∆sub
(x , ξ) =

c√
(x2

1 + ξ2)2 + 16(x2 − 1
2 x1ξ)2

.

Conclusion

The fundamental solution of L is given by the fiber integral:

Γ(x1, x2; y1, y2) =

= c

∫
R

dη√
((x1 − y1)2 + η2)2 + 4(2x2 − 2y2 + η(x1 + y1))2

.
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Higher step groups and Grushin type operators

Example: Consider the Engel group E4 as a matrix group

E4 =




1 x x2

2 z
0 1 x w
0 0 1 y
0 0 0 1

 : x , y ,w , z ∈ R

 ⊂ R4×4.

The corresponding Lie algebra e4 has the following bracket relations:

[X ,Y ] = W and [X ,W ] = Z

A 3-step Carnot group

The Engel group E4 is the lowest dimensional Carnot group of step 3.
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Calculate the left-invariant vector fields X and Y on E4
3.

X :=
∂

∂x
− y

2

∂

∂w
+
(w

2
− xy

12

) ∂

∂z
,

Y :=
∂

∂y
+

x

2

∂

∂w
− x2

12

∂

∂z
.

Lemma

The vector fields X and Y are skew-symmetric on E4. They span a bracket
generating distribution:

H := span
{

X ,Y
}
.

Since W = [X ,Y ] and Z = [X ,W ] = [X , [X ,Y ]].

∆E4
sub = −1

2

{
X 2 + Y 2

}
= Sub-Laplacian.

3Recall: one uses the Baker-Campbell-Hausdorff formula
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Consider the sub-group

N = {sX + tW : s, t ∈ R} ∼= R2

of E4
∼= e4. One obtains a fiber bundle

ρ : E4 −→ N\E4
∼= R2, where ρ(x , y ,w , z) =

(
x , z +

xw

2
+

yx2

6

)
.

Observation

The vector fields X and Y descend via dρ to N\E4. We obtain the
Grushin type operator

G = −dρ(X )2 − dρ(Y )2 = − ∂2

∂u2
− u4

4

∂2

∂v 2
.
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Perform a partial Fourier transform with respect to the variable v . We
obtain a family of operators on R

Lη := − ∂2

∂u2
− u4

4
η2 = ”quartic oscillator” if η 6= 0.

These operators are elliptic if η 6= 0.

Calculating the heat kernel

We could obtain the heat kernel of G from the heat kernel of ∆E4
sub via

a fiber integration:

More precisely: Let Φ : N ×
(
N \ E4

)
−→ E4, be a trivialization of

the bundle a then:

KG
(
t, ρ(x), y

)
=

∫
R2

K ∆
E4
sub
(
t, x ,Φ(u, y)

)
du.

atrivialization means: ρ ◦ Φ(x , y) = x .

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 36 / 37



Perform a partial Fourier transform with respect to the variable v . We
obtain a family of operators on R

Lη := − ∂2

∂u2
− u4

4
η2 = ”quartic oscillator” if η 6= 0.

These operators are elliptic if η 6= 0.

Calculating the heat kernel

We could obtain the heat kernel of G from the heat kernel of ∆E4
sub via

a fiber integration:

More precisely: Let Φ : N ×
(
N \ E4

)
−→ E4, be a trivialization of

the bundle a then:

KG
(
t, ρ(x), y

)
=

∫
R2

K ∆
E4
sub
(
t, x ,Φ(u, y)

)
du.

atrivialization means: ρ ◦ Φ(x , y) = x .

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 36 / 37



Perform a partial Fourier transform with respect to the variable v . We
obtain a family of operators on R

Lη := − ∂2

∂u2
− u4

4
η2 = ”quartic oscillator” if η 6= 0.

These operators are elliptic if η 6= 0.

Calculating the heat kernel

We could obtain the heat kernel of G from the heat kernel of ∆E4
sub via

a fiber integration:

More precisely: Let Φ : N ×
(
N \ E4

)
−→ E4, be a trivialization of

the bundle a then:

KG
(
t, ρ(x), y

)
=

∫
R2

K ∆
E4
sub
(
t, x ,Φ(u, y)

)
du.

atrivialization means: ρ ◦ Φ(x , y) = x .

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 36 / 37



Perform a partial Fourier transform with respect to the variable v . We
obtain a family of operators on R

Lη := − ∂2

∂u2
− u4

4
η2 = ”quartic oscillator” if η 6= 0.

These operators are elliptic if η 6= 0.

Calculating the heat kernel

We could obtain the heat kernel of G from the heat kernel of ∆E4
sub via

a fiber integration:

More precisely: Let Φ : N ×
(
N \ E4

)
−→ E4, be a trivialization of

the bundle a then:

KG
(
t, ρ(x), y

)
=

∫
R2

K ∆
E4
sub
(
t, x ,Φ(u, y)

)
du.

atrivialization means: ρ ◦ Φ(x , y) = x .

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 36 / 37



Thank you for your attention!
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