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Fundamental solution
Consider a linear PDO 1 P on R” of order d, i.e.

P= Z an(x)Dy  where a,(x) € C(R",R)

[a|<d
where we use the standard notation

|ex]
Dy 0

=_————= for a€eN.
X Oxgt e O 0

'PDO=partial differential operator
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Fundamental solution
Consider a linear PDO 1 P on R” of order d, i.e.

P= Z an(x)Dy  where a,(x) € C(R",R)

[a|<d
where we use the standard notation

« ala‘ n
DX = W for (VRS No.
1 n

Definition
Call T : {(x,y) e R" xR" : x # y} — R a global fundamental solution if

o For every x € R we have (x,-) € LL_(R").
e For every p € C°(R")

[ )P en)dy = —p(x).

'PDO=partial differential operator
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Remarks

W. Bauer (Leibniz U. Hannover )

Fundamental solution of degenerate operators

[m]

=



Fundamental solution
Remarks

@ The defining equation of the fundamental solution is shortly written:

PI'y = —éx = Dirac distribution supported at x.
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Fundamental solution
Remarks
@ The defining equation of the fundamental solution is shortly written:

PI'y = —éx = Dirac distribution supported at x.

@ Existence of the fundamental solution is not always guaranteed.
Showing existence (or non-existence) can be complicated.

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 4 /37



Fundamental solution

Remarks

@ The defining equation of the fundamental solution is shortly written:

PI'y = —éx = Dirac distribution supported at x.

@ Existence of the fundamental solution is not always guaranteed.
Showing existence (or non-existence) can be complicated.

@ In general, fundamental solutions are not unique, e.g. one may add a
P-harmonic function h i.e.
Ph =0

to a fundamental solution and gets another one.
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From the heat kernel to the inverse

Let £ be a linear partial differential operator on Rf (smooth coefficients).
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From the heat kernel to the inverse

Let £ be a linear partial differential operator on Rf (smooth coefficients).
Definition

The corresponding heat operator on R x R; is defined by H = £ — 0. J
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From the heat kernel to the inverse
Let £ be a linear partial differential operator on Rf (smooth coefficients).
Definition

The corresponding heat operator on R x R; is defined by H = £ — 0. J

Assumption:

H admits a heat kernel {p:(x, y)}+~0 which is integrable with respect to t.
In particular:

£ypt(X> )’) = atpt(xv )/)-
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From the heat kernel to the inverse

Let £ be a linear partial differential operator on Rf (smooth coefficients).
Definition

The corresponding heat operator on R x R; is defined by H = £ — 0. J

Assumption:

H admits a heat kernel {p:(x, y)}+~0 which is integrable with respect to t.
In particular:

ﬁyPt(X> )’) = atpt(xv }/)-

Observation: At least formally, a fundamental solution of L is given by

Mx,y) = /000 pe(x, y)dt

(can be made precise in many cases).
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From the heat kernel to the inverse

In fact (formal calculation): Let ¢ € C§°(IR"), then

/R Tay)Le(y)dy = / ) /O " Pl )L ply)dy
_ / n /O Ly pex y)dto(y)dy
_ /R n /O " Oupelx, y)deg(y)dy
- /R [pt(X,y)]ZO‘P(Y)dy

— lim /R Pl )oY )dy = ()

t—0
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From the heat kernel to the inverse

In fact (formal calculation): Let ¢ € C§°(IR"), then

/R" F(x,y)L p(y)dy = /n /OOO pe(x, y)dtL p(y)dy
_ / n /O " Lype(xoy)deo(y)dy
_ / / - depe(x, y)dto(y)dy
R JO
= /R [pt(xvy)]zow(y)dy
=~ lim /R pe(x, y)e(y)dy = —¢(y).

Here we have assumed that lim;_, p:(x,y) = 0.
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Reducing the dimension
Here is another example:

Consider the Laplace operator A, on R” with n > 2 and let p > 1.

n 92 n+p 82
A, = o and  Dpyp =0+ Z
j=1 j= n+1

Then A, has the fundamental solution

Pn(x,y) == callx — y|I>~".
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Reducing the dimension
Here is another example:

Consider the Laplace operator A, on R” with n > 2 and let p > 1.

n 92 n+p 82
A, = o and  Dpip=0,+ Z
j=1 j= n+1

Then A, has the fundamental solution

Pn(x,y) == callx — y|I>~".

Observation
We can consider A, , for p > 1 as a

“lifting of A",

i.e. it acts on functions only depending on the variable xq, -, x, as A,.
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Reducing dimension
Lemma

We obtain the fundamental solution of A, from the fundamental solution
of Apyp via a "fiber integration”.

2—n

2—n—p
:/ <\/x12+---+x§+tf+~-+tg> dty - - dtp, = (¥).
RP
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Reducing dimension

Lemma

We obtain the fundamental solution of A, from the fundamental solution
of Apyp via a "fiber integration”.

2—n
2—n—p
_/R <\/X12+---+x§+tf+~--+t§) dty -+ - dtp = (%).
P

Proof: The change of variables t = ||x||7 with 7 € RP and x # 0 gives:

v

2 P

()=l [ (Il + 72l or
RP
= ||Ix|>=" / (1+72) 72 dr.
RP

d
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Lifting

We describe recent work by S. Biagi and A. Bonfiglioli: 2
Let P be a PDO with smooth coefficients.

Definition

We call a PDO Py on R” x RP a lifting of P if

2S. Biagi, A. Bonfiglioli, The existence of a global fundamental solution for

homogeneous Hérmander operators via a global lifting method, Proc. London Math.
Soc. (3), 114 (2017), 855-889.
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Lifting

We describe recent work by S. Biagi and A. Bonfiglioli: 2
Let P be a PDO with smooth coefficients.

Definition
We call a PDO Py on R” x RP a lifting of P if
(a) Pig has smooth coefficients depending on (x,&) € R"” x RP

2S. Biagi, A. Bonfiglioli, The existence of a global fundamental solution for

homogeneous Hérmander operators via a global lifting method, Proc. London Math.
Soc. (3), 114 (2017), 855-889.
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Lifting

We describe recent work by S. Biagi and A. Bonfiglioli: 2
Let P be a PDO with smooth coefficients.

Definition
We call a PDO Py on R” x RP a lifting of P if

(a) Pig has smooth coefficients depending on (x,&) € R" x RP,
(b) For every f € C*(R):

Pige(f o m)(x,€) = (Pf)(x) where (x,§) € R" x RP.

2S. Biagi, A. Bonfiglioli, The existence of a global fundamental solution for

homogeneous Hérmander operators via a global lifting method, Proc. London Math.
Soc. (3), 114 (2017), 855-889.
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Lifting

We describe recent work by S. Biagi and A. Bonfiglioli: 2
Let P be a PDO with smooth coefficients.

Definition
We call a PDO Py on R” x RP a lifting of P if

(a) Pig has smooth coefficients depending on (x,&) € R" x RP,
(b) For every f € C*(R):

Pige(f o m)(x,€) = (Pf)(x) where (x,§) € R" x RP.
Here 7w : R" x RP — R" is the projection to the x-coordinates:

(x,y) = x.

2S. Biagi, A. Bonfiglioli, The existence of a global fundamental solution for

homogeneous Hérmander operators via a global lifting method, Proc. London Math.
Soc. (3), 114 (2017), 855-889.
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Example and equivalent formulation
Observation: Py is a lifting of P if and only if

Pig =P+R where R=) ra,ﬁ(x,g)DgéDf.
B#0
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Example and equivalent formulation
Observation: Py is a lifting of P if and only if

Pie =P+R where R=ras(x,§)DID;.
B0

Example

Consider the Grushin operator on R?:
G = (0)” + (x105) .
A lifting of G to R3 is given by:

G = () + (9 +x10x,)" = G + O2 + 2x105,0% .
—_——

R
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Example and equivalent formulation
Observation: Py is a lifting of P if and only if

Pie =P+R where R=ras(x,§)DID;.
B#0

Example

Consider the Grushin operator on R?:
G = (0)” + (x105) .
A lifting of G to R3 is given by:

G = () + (9 +x10x,)" = G + O2 + 2x105,0% .
—_——

R

Remark: G is up to a change of variables the sub-Laplacian of the
Heisenberg group. Its heat kernel is known do to the group structure.
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Questions

Assumption

One may ask:

Let Pjs be a lifting of P and Py admits a global fundamental solution .
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Questions

Assumption

Let P be a lifting of P and Pjis. admits a global fundamental solution F.J

One may ask:

o Does P admit a fundamental solution T ?
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Questions

Assumption

Let P be a lifting of P and Pjis. admits a global fundamental solution F.J

One may ask:

o Does P admit a fundamental solution T ?

o If yes, can we obtain I by "via integration over some variables” in T ?
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Questions

Assumption
Let P be a lifting of P and Pjis. admits a global fundamental solution F.J

One may ask:
o Does P admit a fundamental solution T ?
o If yes, can we obtain r by "via integration over some variables” in T ?
e If we do not know I explicitly but if we have estimates on I'. Can we
use them to obtain estimates on ' ?
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Questions

Assumption
Let P be a lifting of P and Pjis. admits a global fundamental solution F.J

One may ask:
e Does P admit a fundamental solution T ?
o If yes, can we obtain r by "via integration over some variables” in T ?
e If we do not know I explicitly but if we have estimates on I'. Can we
use them to obtain estimates on ' ?
Why should be lift at all? Adding more variables should make live
more complicated.

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 11 /37



Homogeneous group and dilations
Let G = (R", %) be a nilpotent Lie group.
Definition (homogeneous group)

We call G a homogeneous group, it there is 0 = (01, -+ ,0,) € R"” with
1<o01<02<---<o0y
such that the dilation 0y : G — G with
Sx(xt,  yxn) = (A7xq, -+, A7)

is an automorphism of G for every A > 0, i.e.

Ir(g) *ox(h) = o (g * h).
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Homogeneous group and dilations
Let G = (R", %) be a nilpotent Lie group.

Definition (homogeneous group)

We call G a homogeneous group, it there is 0 = (01, -+ ,0,) € R"” with
1<o01<02<---<o0y
such that the dilation 0y : G — G with
Sx(xt,  yxn) = (A7xq, -+, A7)

is an automorphism of G for every A > 0, i.e.

ox(g) *0x(h) = dr(g *h).

Remark:

The dilations {d)}, form a one-parameter group of automorphisms.
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The homogeneous structure of the Heisenberg group
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The homogeneous structure of the Heisenberg group

Example: Consider again the Heisenberg group H3z = R3 with dilation:

Sx(x1,x2,x3) := (Ax1, Ax2, \°x3)  with (X > 0).
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The homogeneous structure of the Heisenberg group

Example: Consider again the Heisenberg group H3z = R3 with dilation:
Sx(x1,x2,x3) := (Ax1, Ax2, \°x3)  with (X > 0).
Then we have

In(x1,x2,x3) * Ox(y1,¥2,¥3)
= ()\Xl,)\x2,)\2X3) * ()\yl,)\yg,)\2y3)

1
= (/\(Xl + 1), A2 + y2), A (x5 + y3) + 5 [AxiAys — Ay1dx) )

-~

=\2 ((X3 +y3)+3 [X1Y2—y1><2} )

:5,\<(X17X27X3) * ()/17}/2,}/3)>~
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The homogeneous structure of the Heisenberg group

Example: Consider again the Heisenberg group H3z = R3 with dilation:

Sx(x1,x2,x3) := (Ax1, Ax2, \°x3)  with (X > 0).
Then we have

In(x1,x2,x3) * Ox(y1,¥2,¥3)
= (/\Xl,)\x2,)\2X3) * ()\yl,)\yg,)\2y3)

1
= (/\(Xl + 1), A2 + y2), A (x5 + y3) + 5 [AxiAys — Ay1dx) )

=\2 ((X3 +y3)+3 [X1Y2—y1><2} )

:5,\<(X17X27X3) * ()/17}/2,Y3)>~

Therefore Hj is a homogeneous Lie group with o = (1,1, 2).
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Homogeneous vector fields

Having dilations {0}, we can define §\-homogeneous vector fields:
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Homogeneous vector fields

Having dilations {0, }, we can define d,-homogeneous vector fields:
Definition
Let Xi,---, X be C*>-vector fields in G = (R”,*). Then we call X;

homogeneous of degree 1 if:

Xi(fody) =A(Xif) o by VYA>0, Vfe C®R"R).
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Homogeneous vector fields

Having dilations {0, }, we can define d,-homogeneous vector fields:
Definition

Let Xi, -, Xy, be C*-vector fields in G = (R", x). Then we call X
homogeneous of degree 1 if:

Xi(fody) = A(Xif) 06y VA>0, Ve CP°R",R).

Further assumptions: Assume that X7, - -, X},
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Homogeneous vector fields

Having dilations {0, }, we can define d,-homogeneous vector fields:
Definition

Let Xi, -, Xy, be C*-vector fields in G = (R", x). Then we call X
homogeneous of degree 1 if:

Xi(fo8y) = A(Xif) 06y VA>0, Vfe C®R"R).

Further assumptions: Assume that X7, - -, X},

@ are linearly independent as linear differential operators,
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Homogeneous vector fields

Having dilations {0, }, we can define d,-homogeneous vector fields:
Definition

Let Xi, -, Xy, be C*-vector fields in G = (R", x). Then we call X
homogeneous of degree 1 if:

Xi(fody) = A(Xif) 06y VA>0, Vfe CPR"R).

Further assumptions: Assume that X7, - -, X},
@ are linearly independent as linear differential operators,

o fulfill the Hormander bracket generating condition, i.e for all g € G:

dm{xg);Xeuquu,mg}:n
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Homogeneous vector fields
Having dilations {0, }, we can define d,-homogeneous vector fields:
Definition

Let Xi, -, Xy, be C*-vector fields in G = (R", x). Then we call X
homogeneous of degree 1 if:

Xi(fody) = A(Xif) 06y VA>0, Vfe CPR"R).

Further assumptions: Assume that X7, - -, X},
@ are linearly independent as linear differential operators,

o fulfill the Hormander bracket generating condition, i.e for all g € G:
dm{X@):XeUQM,~,X@}:n

Note: /f X and Y are 0\-homogeneous of degree di and d», respectively.
Then [X, Y] is d\-homogeneous of degree di + db.
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Example:

Consider again the Grushin operator G on R? defined by

G = (0) + (x10) = X2 + X2,
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Example:

Consider again the Grushin operator G on R? defined by

G = (04)> + (x100)> = X2 + X3,
On RR? define the dilation 8 (x1,x2) == (Ax1, A?x2).
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Example:

Consider again the Grushin operator G on R? defined by
G = (9)" + (x00)" = X2 + X3,

On RR? define the dilation 8 (x1,x2) == (Ax1, A?x2).

Observation
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Example:

Consider again the Grushin operator G on R? defined by
G = (9)" + (x00)" = X2 + X3,

On RR? define the dilation 8 (x1,x2) == (Ax1, A?x2).

Observation

@ The bracket generating condition is fulfilled with m = 2, since

dim {X]_ = 8X17X2 — Xlaxza [XlaXZ] - 8)(2} = 3.
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Example:

Consider again the Grushin operator G on R? defined by
G = (9)" + (x00)" = X2 + X3,

On RR? define the dilation 8 (x1,x2) == (Ax1, A?x2).

Observation

@ The bracket generating condition is fulfilled with m = 2, since

dim {X]_ = 8X1,X2 — Xlaxza [XlaX2:| - 8)(2} = 3.

@ X; and X, are homogeneous of degree 1: Let g = (x1,x2), then

Xi(f 062)(g) = B [f (Mxa, Axa)] = A0 F) (M1, Ax0) = A(Xaf) 0 6:(g),
Xo(f 0 6))(g) = X105 [f(Ax1, A2x2)] = A(Ax1) [0, f] 0 x(g) = A(Xef) o ox(g)
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From homogeneous vector fields to a nilpotent Lie algebra

Let X = {Xq, -+, X;n} be homogeneous vector fields on R” with the

previous assumptions. We consider the Lie algebra generated by X:
a:= Lie{Xl, . ,Xm}
= smallest Lie subalgebra of vector fields on R" containing X .

The d\-homogeneity of the vector fields implies the following:
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From homogeneous vector fields to a nilpotent Lie algebra

Let X = {Xq, -+, X;n} be homogeneous vector fields on R” with the
previous assumptions. We consider the Lie algebra generated by X:

a:=Lie{X, - Xn}
= smallest Lie subalgebra of vector fields on R" containing X .

The d\-homogeneity of the vector fields implies the following:
Lemma

The Lie algebra a is finite dimensional and it corresponds to a Carnot
group

G=a®ad® - ®a, and {[al’a”]:a” 2sisr

[a1,a,] = {0}.
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From homogeneous vector fields to a nilpotent Lie algebra

Let X = {Xq, -+, X;n} be homogeneous vector fields on R” with the
previous assumptions. We consider the Lie algebra generated by X:

a:=Lie{X, - Xn}
= smallest Lie subalgebra of vector fields on R" containing X .

The d\-homogeneity of the vector fields implies the following:

Lemma

The Lie algebra a is finite dimensional and it corresponds to a Carnot
group

la,ai1] =@a;, 2<i<r,

[a1,a,] = {0}.

Here, the "first level” is a; = span{ Xy, -, X, }.

a=a1Payd---da, and {

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018

16 / 37



From the nilpotent Lie algebra to a Carnot group
Reminder:

We can equip a with a group structure via exponential coordinates: Via
the Campbell-Baker-Hausdorff formula the product is:

XoY=X+Y+= [X Y1+ [X X, Y]] - [Y [X, Y]] + - - - (finite).
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From the nilpotent Lie algebra to a Carnot group

Reminder:

We can equip a with a group structure via exponential coordinates: Via
the Campbell-Baker-Hausdorff formula the product is:

XoY=X+Y+= [X Y1+ [X X, Y]] - [Y [X, Y]] + - - - (finite).

Summing up:
Lemma
Let N :=dima. Then G = (a =2 RN, o) is a Carnot group with Lie algebra

(isomorphic to) a. Moreover,

a= Lie{xl,.-- ,xm}

is a Lie algebra of smooth vector fields on R" (we can "exponentiate” ).

v
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A family of dilations on a = G

Recall that a has a stratification

a=aSaxd---Da,

with [al, a,-_1] = a.

W. Bauer (Leibniz U. Hannover )

[m]

&
Fundamental solution of degenerate operators



A family of dilations on a = G
Recall that a has a stratification

a=a1Payd---Da, with [al,a,-,l] = qaj.

Definition
For each \ > 0 define a dilation {45}, on a = RV via the decomposition
of elements:

(X)) = Z)\kak where X = Zak and ay € ay.
k=1 k=1
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A family of dilations on a = G
Recall that a has a stratification

a=a1Payd---Da, with [al,a,-,l] = qaj.

Definition
For each \ > 0 define a dilation {45}, on a = RV via the decomposition
of elements:

(X)) = Z)\kak where X = Zak and ay € ay.
k=1 k=1

Lemma: The dilation 0% defines a group automorphism of (G = a,¢).
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A family of dilations on a = G
Recall that a has a stratification

a=a1Payd---Da, with [al,a,-,l] = qaj.

Definition
For each \ > 0 define a dilation {45}, on a = RV via the decomposition
of elements:

r r
= Z)\kak where X = Zak and aj € ay.
k=1

Lemma: The dilation 0% defines a group automorphism of (G = a,¢).

Proof: It is sufficient to show that Jf induces a Lie algebra automorphism:

[63(X), 33(Y)] [ZAJ;;,,ZA%E} - Z N (3, a] = 62 ([X, Y1).

j =1
Js Care
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Reminder: Sub-Riemannian structure on a Carnot group
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Reminder: Sub-Riemannian structure on a Carnot group
Definition

We call (G = a,9¢,6%) a homogeneous Carnot group.
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Reminder: Sub-Riemannian structure on a Carnot group
Definition

We call (G = a,9¢,6%) a homogeneous Carnot group.

Next: Equip (G = a,¢) with a Sub-Riemannian structure:

Choose a linear basis of a = a; & ay & - - - 6 a, as follows:
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Reminder: Sub-Riemannian structure on a Carnot group
Definition

We call (G = a,9,6%) a homogeneous Carnot group.

Next: Equip (G = a,¢) with a Sub-Riemannian structure:
Choose a linear basis of a = a; & ay & - - - 6 a, as follows:
@ take the basis [Xi, -, Xj,] of the first level a;.
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Reminder: Sub-Riemannian structure on a Carnot group
Definition

We call (G = a,9,6%) a homogeneous Carnot group.

Next: Equip (G = a,¢) with a Sub-Riemannian structure:
Choose a linear basis of a = a; & ay & - - - 6 a, as follows:
@ take the basis [Xi, -, Xj,] of the first level a;.

o for each r = 2,--- . m take a basis [Xl(l), . -Xe(rr)] of a,.
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Reminder: Sub-Riemannian structure on a Carnot group

Definition

We call (G = a,9,6%) a homogeneous Carnot group.

Next: Equip (G = a,¢) with a Sub-Riemannian structure:

Choose a linear basis of a = a; & ay & - - - 6 a, as follows:

@ take the basis [Xi, -, Xj,] of the first level a;.
o for each r = 2,--- . m take a basis [Xl(l), . -Xg(rr)] of a,.
Definition

We call the basis

Xl,---,Xm,Xl(z),---X(z) ...’Xl(’)v...’xz(r’)

an adapted basis of the Lie algebra a. This basis gives the concrete
identification between a and R".
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Sub-Riemannian structure on the Carnot group
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Sub-Riemannian structure on the Carnot group

Identifications
Via the above basis we make the following identifications:

Carnot group: G ~a <+— RV,

dilation on G: 65 <«— Dy(a) = ()\slal,--- ,)\S’VaN), ac RN
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Sub-Riemannian structure on the Carnot group

Identifications

Via the above basis we make the following identifications:
Carnot group: G ~a <+— RV,

dilation on G: 6§ <«— Dy(a) = ()\slal,--- ,)\S’VaN), ac RN
The exponents s; in the dilation are given by:

(51,-~-,sN):(l,---,1,2,---,2,---,r,---,r).
S—_—— —=— SN——

=dima dim ap dim a,
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Sub-Riemannian structure on the Carnot group

Identifications
Via the above basis we make the following identifications:

Carnot group: G ~a <+— RV,

dilation on G: 6§ <«— Dy(a) = ()\5131’__, ,)\S’VaN), ac RN
The exponents s; in the dilation are given by:

(517"',SN)Z(l,"'71,2,"',2,"'#,"'#)-

—_——— —— ——
=dima dim ap dim a,
Identify [Xi,- -, Xin] with left-invariant vector fields [Ji,-- -, Jn] on the

homogeneous Carnot group (RV o, Dy). Then
"= span{Jl, - ,Jm} c TRV

is a bracket generating distribution in the tangent bundle of RV,
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Sub-Laplacian on RV

Observation

The homogeneous Carnot group (RV, o, Dy) is equipped via # with a
Sub-Riemannian structure. Its (intrinsic) Sub-Laplacian has the form:

Dap =2+ 4+ J2,

and defines a hypo-elliptic operator with underlying group structure.

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 21 /37




Sub-Laplacian on RV

Observation

The homogeneous Carnot group (RV, o, Dy) is equipped via # with a
Sub-Riemannian structure. Its (intrinsic) Sub-Laplacian has the form:

Dap =2+ 4+ J2,

and defines a hypo-elliptic operator with underlying group structure.

Question: Now we have constructed two "sum-of-squares operators”:

L=X?+---+X2 (onR"
Agsub,6 =24+ 4+ 2 (on G=RN where N> n).
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The homogeneous Carnot group (RV, o, Dy) is equipped via # with a
Sub-Riemannian structure. Its (intrinsic) Sub-Laplacian has the form:

Dap =2+ 4+ J2,

and defines a hypo-elliptic operator with underlying group structure.

Question: Now we have constructed two "sum-of-squares operators”:

L=X?+---+X2 (onR"
Agsub,6 =24+ 4+ 2 (on G=RN where N> n).

@ What is the relation between these operators?
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Sub-Laplacian on RV

Observation

The homogeneous Carnot group (RV, o, Dy) is equipped via # with a
Sub-Riemannian structure. Its (intrinsic) Sub-Laplacian has the form:

Dap =2+ 4+ J2,

and defines a hypo-elliptic operator with underlying group structure.

Question: Now we have constructed two "sum-of-squares operators”:

L=X?+---+X2 (onR"
Ao =J12+--'+J,3,, (on G = RN where N > n).

@ What is the relation between these operators?

@ Can we use knowledge on Ay}, ¢ to study £?
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From the Carnot group back to R”

Let X € a = Lie{Xq, -+, Xy} be a d\-homogeneous vector field on R".
Consider the induced integral curve starting in 0 € R":

dyX =XoWw¥X, teR

UX R s R" ith *
t wi {wé( _ 0 ( )
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From the Carnot group back to R”

Let X € a = Lie{Xq, -+, Xy} be a d\-homogeneous vector field on R".
Consider the induced integral curve starting in 0 € R":

d \yX X
U =Xow R
VR R with {9 °F I (*)
' vE =0
0 .

On the completeness

Based on the §)\-homogeneity one can show that all vector fields X € a are
complete, i.e. the induced flow (x) exists for all times t € R.
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From the Carnot group back to R”

Let X € a = Lie{Xq, -+, Xy} be a d\-homogeneous vector field on R".
Consider the induced integral curve starting in 0 € R":

dyX =XoWw¥X, teR

UX R s R" ith *
t wi {\US(ZO ( )

On the completeness

Based on the §)\-homogeneity one can show that all vector fields X € a are
complete, i.e. the induced flow (x) exists for all times t € R.

Consider the following map:

RV SR, n(a) = (Wfa(0)> ;

[t=1
where a 3 X, «+— a € R" in our identification above.
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Lifting theorem by Folland
Theorem (Folland, 1977)

The map 7 : RN — R" has the following properties:

v
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Lifting theorem by Folland
Theorem (Folland, 1977)

The map 7 : RN — R" has the following properties:

@ forall A\ >0 and all a € RN we have: 2

W(Dk(a)) = 55 (n(a)).

v
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Lifting theorem by Folland
Theorem (Folland, 1977)

The map 7 : RN — R" has the following properties:

@ forall A\ >0 and all a € RN we have: 2

W(Dk(a)) = 55 (n(a)).

@ 7w is a polynomial map.

v
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Lifting theorem by Folland
Theorem (Folland, 1977)

The map 7 : RN — R" has the following properties:
e forall A >0 and all a € RN we have: ?

W(Dk(a)) = 55 (n(a)).

@ 7w is a polynomial map.

e If Jy,---,Jy are the left-invariant vector fields which correspond to
the adapted basis of a =2 RN, then

dr(Ji)(a) = Xj(n(a)), VaeRV,

where X; is in the adapted basis of a.

?G.B. Folland, on the Rothschild-Stein lifting theorem, Comm. Partial
Differential Equations 2 (1977), 161-207.
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Reminder: lifting of an operator
Definition

We call a PDO Py on R” x RP a lifting of P if
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Reminder: lifting of an operator

Definition
We call a PDO Py on R” x RP a lifting of P if
(a) Pig has smooth coefficients depending on (x,&) € R" x RP,
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Reminder: lifting of an operator

Definition

We call a PDO Py on R” x RP a lifting of P if

(a) Pig has smooth coefficients depending on (x,&) € R" x RP,
(b) For every f € C*(R):

Pige(f o m)(x,€) = (Pf)(x) where (x,§) € R" x RP.
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Reminder: lifting of an operator
Definition
We call a PDO Py on R” x RP a lifting of P if
(a) Pig has smooth coefficients depending on (x,&) € R" x RP,
(b) For every f € C*(R):
Pige(f o m)(x,€) = (Pf)(x) where (x,§) € R" x RP.

Here 7 : R” x RP — R" is the projection to the x-coordinates:

(x,y) = x.
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Reminder: lifting of an operator
Definition
We call a PDO Py on R” x RP a lifting of P if
(a) Pig has smooth coefficients depending on (x,&) € R" x RP,
(b) For every f € C*(R):
Pige(f o m)(x,€) = (Pf)(x) where (x,§) € R" x RP.

Here 7 : R” x RP — R" is the projection to the x-coordinates:

(x,y) = x.

Next:

Can one choose coordinates in Folland's lifting theorem in such a way that
7RV 5 R"

becomes just the projection onto the first n coordinates of a vector in R",
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Lifting sums of squares

Theorem (S. Biagi, A. Bonfiglioli, 2017)
Let Xy, -+, Xy be dy-homogeneous of degree 1 vector fields on R" with

N = dim Lie{Xl, e ,Xm}.
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Let Xy, -+, Xy be dy-homogeneous of degree 1 vector fields on R" with
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Then there is:
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Lifting sums of squares

Theorem (S. Biagi, A. Bonfiglioli, 2017)

Let Xy, -+, Xy be dy-homogeneous of degree 1 vector fields on R" with

N = dim Lie{Xl, e ,Xm}.
Then there is:

® a homogeneous Carnot group G = (RN, o, Dy) with m generators and
nilpotent of step r.
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Lifting sums of squares

Theorem (S. Biagi, A. Bonfiglioli, 2017)

Let Xy, -+, Xy be dy-homogeneous of degree 1 vector fields on R" with
N = dim Lie{Xl, e ,Xm}.

Then there is:

® a homogeneous Carnot group G = (RN, o, Dy) with m generators and
nilpotent of step r.

@ asystem {Zy, -+ ,Zn,} of Lie generators of the Lie algebra a of G
such that

Z; is a lifting of X;

via the projection 7w : RN — R" onto the first n variables.
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Lifting sums of squares

Theorem (S. Biagi, A. Bonfiglioli, 2017)

Let Xi,---, X, be §y-homogeneous of degree 1 vector fields on R" with
N = dim Lie{Xl, e ,Xm}.

Then there is:

® a homogeneous Carnot group G = (RN, o, Dy) with m generators and
nilpotent of step r.

@ asystem {Zy, -+ ,Zn,} of Lie generators of the Lie algebra a of G
such that

Z; is a lifting of X;

via the projection 7w : RN — R" onto the first n variables.

Remark: One can construct the lifting explicitly!
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Lifting sums of squares

With the above notation we have:

Theorem (S. Biagi, A. Bonfiglioli, 2017)
The sub-Laplacian
Awpc =2+ + 25

on the homogeneous Carnot group (R", o, D), of the previous theorem is
a lifting of the sum-of-squares operator:
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Fundamental solution
Assumptions:

Let X1,

-, Xm be linearly independent smooth vector fields on R"” with:
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Fundamental solution

Assumptions:
Let Xi,- -, X be linearly independent smooth vector fields on R” with:

1. Xjfor j=1,---,mis dy-homogeneous of degree 1.
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Fundamental solution

Assumptions:
Let Xi,- -, X be linearly independent smooth vector fields on R” with:
1. Xjfor j=1,---,mis dy-homogeneous of degree 1.

2. Hormander rank condition at zero:

dim { X(0) : X € Lie{Xy, -, Xn} } = n.
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Fundamental solution

Assumptions:
Let Xi,- -, X be linearly independent smooth vector fields on R” with:
1. Xjfor j=1,---,mis dy-homogeneous of degree 1.

2. Hormander rank condition at zero:

dim { X(0) : X € Lie{Xy, -, Xn} } = n.

3. Define the sum-of-squares operator: £ = ijzl XJ-2.
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Fundamental solution

Assumptions:
Let Xi,- -, X be linearly independent smooth vector fields on R” with:
1. Xjfor j=1,---,mis dy-homogeneous of degree 1.

2. Hormander rank condition at zero:

dim { X(0) : X € Lie{Xy, -, Xn} } = n.

3. Define the sum-of-squares operator: £ = ZJ"’Zl Xj2.

4. G = (RN o, Dy) = homogeneous Carnot group constructed above
with sub-Laplacian:

Db =28+ + 27,
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A theorem by Folland

Homogeneous norm: (01, ,0,,07, -+ ,0,) hom. dimensions of Dj:

n ) p
h(x,€) =Y 1517 + > I
=1 k=1

1
% where (x,6) € RV =R" x RP.
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A theorem by Folland

Homogeneous norm: (01, ,0,,07, -+ ,0,) hom. dimensions of Dj:

n ) p
h(x,€) =Y 1517 + > I
=1 k=1

1
% where (x,6) € RV =R" x RP.

Theorem (G.B. Folland, 1973)

The sub-Laplacian Agp ¢ admits a unique fundamental solution g with:

v
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A theorem by Folland

Homogeneous norm: (01, ,0,,07, -+ ,0,) hom. dimensions of Dj:

1
Tk

n 1 P

h(X>f):Z’Xj|UJ +Z|§k where  (x,€) c RN =R" x R".
j=1 k=1

Theorem (G.B. Folland, 1973)

The sub-Laplacian Agp ¢ admits a unique fundamental solution g with:
(a) 76 € C*(RV\ {0},R) and v¢ > 0 on RV \ {0},

v
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A theorem by Folland

Homogeneous norm: (01, ,0,,07, -+ ,0,) hom. dimensions of Dj:

hx.€) = Zrme\gﬁ

j=1

where (x,¢) € RV =R" x RP.

Theorem (G.B. Folland, 1973)

The sub-Laplacian Agp ¢ admits a unique fundamental solution g with:
(@) v € C®(RN\ {0},R) and ¢ > 0 on RN\ {0},
(b) 76 € LL (RN) and ¢ vanishes at infinity,

y
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A theorem by Folland

Homogeneous norm: (01, ,0,,07, -+ ,0,) hom. dimensions of Dj:

hx.€) = er,mmﬁ

j=1

where (x,¢) € RV =R" x RP.

Theorem (G.B. Folland, 1973)

The sub-Laplacian Agp ¢ admits a unique fundamental solution g with:

(a) v¢ € C®(RN\ {0},R) and v > 0 on RN\ {0},

(b) 76 € LL (RN) and ¢ vanishes at infinity,

(c) Y6 is Dx-homogeneous of degree 2 — (357_y 0, + 37 1 07) =2 Q
and:

Asub,G ('YG) = —do-

y
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A theorem by Folland

Homogeneous norm: (01, ,0,,07, -+ ,0,) hom. dimensions of Dj:

1
Tk

n 1 P

h(X>f):Z’Xj|UJ +Z\§k where (x,g)eRN:R"xRP.
j=1 k=1

Theorem (G.B. Folland, 1973)

The sub-Laplacian Agp ¢ admits a unique fundamental solution g with:
(@) v € C®(RN\ {0},R) and ¢ > 0 on RN\ {0},
(b) 76 € LL (RN) and ¢ vanishes at infinity,

(c) Y6 is Dx-homogeneous of degree 2 — (357_y 0, + 37 1 07) =2 Q
and:

Asub,G (’YG) = —do-

(d) Thereis C > 0 with: C 1h?>=Q(x,&) < y6(x,&) < Ch?=9(x,£).
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Fundamental solution of L

Mol &yom) =76 () o (v,m)
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Fundamental solution of £
Mo &yom) =6 ((x O o rm), (&) # (vom).

Theorem (S. Biagi, A. Bonfiglioli, 17)

Assume that q =3 0;>2 and G = (RN, o, Dy) = as above.
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Fundamental solution of £
Mo &yom) =6 ((x O o rm), (&) # (vom).

Theorem (S. Biagi, A. Bonfiglioli, 17)

Assume that q =3 0;>2 and G = (RN, o, Dy) = as above.
(a) Then

M(x,y) = /Rp Fe(x,0;y,n)dn  (x#y)

is a fundamental solution for £L = X{ + - + X2,
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Fundamental solution of £
Mo &yom) =6 ((x O o rm), (&) # (vom).

Theorem (S. Biagi, A. Bonfiglioli, 17)

Assume that q =3 0;>2 and G = (RN, o, Dy) = as above.
(a) Then

M(x,y) = /Rp Fe(x,0;y,n)dn  (x#y)

is a fundamental solution for £L = X{ + - + X2,

(b) There is a global estimate:

ct L H=((x,0)" o (y,m))dn < T(x,y) <
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Fundamental solution of £ (continued)

Theorem (S. Biagi, A. Bonfiglioli, 17)
With the previous notations: '(x,y) has the §)-homogeneity:

Put : r<5,\(x); 5)\(y)) = \279.T(x,y) where R">x+#y, A>0.

Moreover [(x,y) has the following properties:

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018 30/ 37




Fundamental solution of £ (continued)

Theorem (S. Biagi, A. Bonfiglioli, 17)

With the previous notations: '(x,y) has the §)-homogeneity:

Put : r<5,\(x); 5)\(y)) = \279.T(x,y) where R">x+#y, A>0.

Moreover [(x,y) has the following properties:
(1) Symmetry: T(x,y) =T(y,x) for all x #y € R",
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Fundamental solution of £ (continued)

Theorem (S. Biagi, A. Bonfiglioli, 17)
With the previous notations: '(x,y) has the §)-homogeneity:

Put : r<5,\(x); 5)\(y)) = \279.T(x,y) where R">x+#y, A>0.

Moreover [(x,y) has the following properties:
(1) Symmetry: T(x,y) =T(y,x) for all x # y € R",
(2) I(x,-) =T(-,x) is L-harmonic on R" \ {x},
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Fundamental solution of £ (continued)

Theorem (S. Biagi, A. Bonfiglioli, 17)
With the previous notations: '(x,y) has the §)-homogeneity:

Put :

Moreover [(x,y) has the following properties:
(1) Symmetry: T(x,y) =T(y,x) for all x # y € R",
(2) I(x,-) =T(-,x) is L-harmonic on R" \ {x},

(3) [(x,-) =T (-, x) vanishes at infinity uniformly on compact sets,

r(&,\(x); 5)\(y)) = \279.T(x,y) where R">x+#y, A>0.

W. Bauer (Leibniz U. Hannover ) Fundamental solution of degenerate operators March 4-10. 2018

30 /37



Fundamental solution of £ (continued)

Theorem (S. Biagi, A. Bonfiglioli, 17)

With the previous notations: '(x,y) has the §)-homogeneity:

Put : r(&,\(x); 5)\(y)) = \279.T(x,y) where R">x+#y, A>0.

Moreover [(x,y) has the following properties:

(1) Symmetry: T(x,y) =T(y,x) for all x # y € R",

(2) I(x,-) =T(-,x) is L-harmonic on R" \ {x},

(3) I'(x,:) =T(:,x) vanishes at infinity uniformly on compact sets,
(4) Outside the diagonal Diag = {(x,x) : x € R"} in R" x R":
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Fundamental solution of £ (continued)

Theorem (S. Biagi, A. Bonfiglioli, 17)

With the previous notations: '(x,y) has the §)-homogeneity:

Put : r(&,\(x); 5)\(y)) = \279.T(x,y) where R">x+#y, A>0.

Moreover [(x,y) has the following properties:

(1) Symmetry: T(x,y) =T(y,x) for all x # y € R",

(2) I(x,-) =T(-,x) is L-harmonic on R" \ {x},

(3) I'(x,:) =T(:,x) vanishes at infinity uniformly on compact sets,
(4) Outside the diagonal Diag = {(x,x) : x € R"} in R" x R":

e L (R" x R\ Diag) N C>°(R" x R" \ Diag).
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Example

Consider the Grushin operator on R? with dilation 6, (x1,x2) = (Ax1, A?x2)
L=X?+X; where

Xl = aXU

X2 = x18X2 .
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Example

L=X2+ X3

Consider the Grushin operator on R? with dilation 6, (x1,x2) = (Ax1, A?x2)
where

Xl = aX17

X2 = x18X2.
e Carnot group: G = (R3, 0, Dy) with

D)\(Xl) 5X27£) = ()‘Xla )\2X2a )\g) and Q =4
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Example
Consider the Grushin operator on R? with dilation & (x1, x0) = (Ax1, \?x0):

L=X}+X; where X; =0y, Xo=x10x.

e Carnot group: G = (R3, 0, Dy) with

Da(x1,,%2,€) = (Ax1, \2x2,\) and  Q = 4.

@ Product on G:

(x1,%2, &) © (y1,¥2,m) = (Xl +y1,% + y2 +xan,§ + 77)-
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Example
Consider the Grushin operator on R? with dilation & (x1, x0) = (Ax1, \?x0):

L=X}+X; where X; =0y, Xo=x10x.

e Carnot group: G = (R3, 0, Dy) with

Da(x1,,%2,€) = (Ax1, \2x2,\) and  Q = 4.

@ Product on G:

(x1,%2, &) © (y1,¥2,m) = (Xl +y1,% + y2 +xan,§ + 77)-

o Liftings of X; — Z1 = 0,, and X5 — Z> = x10y, + O and
L=X?+X3 liftsto D=2+ 273
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Example

e Fundamental solution of Ag,, for (x, &) # (0,0):

W. Bauer (Leibniz U. Hannover )

rAsub (X7 5) =

C

JO&+ €2 1160 — 3na6)?
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Example

e Fundamental solution of Ag,, for (x, &) # (0,0):

C

JO&+ €2 1160 — 3na6)?

rAsub (X7 5) -

Conclusion
The fundamental solution of L is given by the fiber integral:

I (X17X2;y17y2) -
/R - = + 4(2x0 — 20 + n a4
\/((Xl yl)2 772)2 ( X2 Y2 (Xl yl))2 .

V.
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Higher step groups and Grushin type operators

Example: Consider the Engel group &, as a matrix group

1 x X; z

0 1 X w Ax4
Ey = : eR » CR™™.
4 0 0 1 y X7y7W7Z

00 0 1
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Higher step groups and Grushin type operators

Example: Consider the Engel group &, as a matrix group

Ey = C X, y,w,z €R 3 C R4,

oo o
O O~ X
o~ X N%,
=< I N

The corresponding Lie algebra ¢4 has the following bracket relations:

[X,Y]=W  and [X,W]=2Z
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Higher step groups and Grushin type operators

Example: Consider the Engel group &, as a matrix group

1 x X; z

0 1 X w Ax4
Ey = ; eR » CR™™.
4 0 0 1 y X7y7W7Z

00 0 1

The corresponding Lie algebra ¢4 has the following bracket relations:

[X,Y]=W  and [X,W]=2Z

A 3-step Carnot group
The Engel group &, is the lowest dimensional Carnot group of step 3. J
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Calculate the left-invariant vector fields X and Y on & 3.

0y 0 w  xy\ O
'_ax_zaw+<2_12)$’

L0 x0 X8
T dy 20w 120z

3Recall: one uses the Baker-Campbell-Hausdorff formula
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Calculate the left-invariant vector fields X and Y on & 3.

0 y3+<w xy)a

Tox 20w \2 12/ 0z

y—90 ,x0 _x0o
T dy 20w 120z

Lemma

The vector fields X and Y are skew-symmetric on &. They span a bracket
generating distribution:

H = span{X, Y}.

3Recall: one uses the Baker-Campbell-Hausdorff formula
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Calculate the left-invariant vector fields X and Y on & 3.

0y 0 w  xy\ O
'_8x_2aw+<2_12) 0z’
0 x 0 x2 0

V=5 T 2ow 120z

Lemma
The vector fields X and Y are skew-symmetric on &. They span a bracket
generating distribution:

H = span{X, Y}.

Since W = [X, Y] and Z = [X, W] = [X, [X, Y]].

3Recall: one uses the Baker-Campbell-Hausdorff formula
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Calculate the left-invariant vector fields X and Y on & 3.

0y 0 w  xy\ O
'_8x_2aw+<2_12) 0z’
0 x 0 x2 0

V=5 T 2ow 120z

Lemma
The vector fields X and Y are skew-symmetric on &. They span a bracket
generating distribution:

H = span{X, Y}.

Since W = [X, Y] and Z = [X, W] = [X, [X, Y]].

1
Af;‘b = —E{Xz + Y2} = Sub-Laplacian.

3Recall: one uses the Baker-Campbell-Hausdorff formula
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Consider the sub-group

N ={sX+tW : st € R} X R?
of £, = ¢4. One obtains a fiber bundle

p:E — N\E = R?, where p(x,y,w,z)= (

xz+XW-|-yX2
' 2 6 )
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Consider the sub-group
N ={sX+tW : s,t € R} = R?
of £, = ¢4. One obtains a fiber bundle

2
p: & — N\E 2 R?, where p(x,y,w,z) = <X’Z+X;V+y>6<>'

Observation
The vector fields X and Y descend via dp to N'\E;. We obtain the

Grushin type operator
0? u* 0?
o 4 v

G = —dp(X)* — dp(Y)? = -
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Perform a partial Fourier transform with respect to the variable v. We

obtain a family of operators on R

9?2 u?

Ly=—5=— —772 = "quartic oscillator” if n # 0.

ou? 4
These operators are elliptic if 7 # 0.

Calculating the heat kernel
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Perform a partial Fourier transform with respect to the variable v. We

obtain a family of operators on R

9?2 u?

Ly=—5=— —772 = "quartic oscillator” if n # 0.

ou? 4
These operators are elliptic if 7 # 0.

Calculating the heat kernel

@ We could obtain the heat kernel of G from the heat kernel of Asgjb via

a fiber integration:
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Perform a partial Fourier transform with respect to the variable v. We

obtain a family of operators on R

9?2 u?

Ly=—5=— —772 = "quartic oscillator” if n # 0.

ou? 4
These operators are elliptic if 7 # 0.

Calculating the heat kernel

@ We could obtain the heat kernel of G from the heat kernel of Asgjb via

a fiber integration:

More precisely: Let ® : N x (N'\ &) —> &, be a trivialization of

the bundle @ then:
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Perform a partial Fourier transform with respect to the variable v. We

obtain a family of operators on R

9?2 u?

Ly=—5=— —n2 = "quartic oscillator” if n # 0.

ou? 4
These operators are elliptic if 7 # 0.

Calculating the heat kernel

@ We could obtain the heat kernel of G from the heat kernel of Afjb via

a fiber integration:

More precisely: Let ® : N x (N'\ &) —> &, be a trivialization of

the bundle @ then:

K9 (0(00.7) = [ K5 (130(0.))

trivialization means: po ®(x,y) = x.
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Thank you for your attention!
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