Lecture III: Geometric Constructions Relating Different Special Geometries II

Vicente Cortés
Department of Mathematics
University of Hamburg

Winter School "Geometry, Analysis, Physics"
Geilo (Norway), March 4-10, 2018

Plan of the third lecture

- One-loop quantum correction
- HK/QK-correspondence
- Special geometry of Euclidean $N=2$ theories

Some references for Lecture III

Collaborations concerning HK/QK, 1-loop etc.
[CD] C.-, David, arXiv:1706.05516
[CS] C.-, Saha (MZ '17)
[CDiM] C.-, Dieterich, Mohaupt (LMP ‘17)
[ACDM] Alekseevsky, C.- , Dyckmanns, Mohaupt (JGP ‘15), arXiv:1305...
[ACM] Alekseevsky, C.- , Mohaupt (CMP ‘13), arXiv:1205...
Related work
[MS] Macía, Swann (CMP '15), arXiv:1404...
[H] Hitchin (CMP '13), arXiv:1210...
[APP] Alexandrov, Persson, Pioline (JHEP ‘11).
[Ha] Haydys (JGP '08).
[RSV] Robles-Llana, Saueressig, Vandoren (JHEP ‘06).

Some references for Lecture III

Collaborations related to special geometry of Euclid. theories
[CDMV] C.--, Dempster, Mohaupt, Vaughan (JHEP ‘15)
[CDM] C.-, Dempster, Mohaupt (JHEP '14)
[CM] C.-, Mohaupt (JHEP '09).
[C] C.- (MS '06)
[CMMS2] C.-, Mayer, Mohaupt, Saueressig (JHEP ‘05).
[AC] Alekseevsky, C.- (AMST ‘05)
[ABCV] Alekseevsky, Blazic, C.-, Vukmirovic (JGP ‘05)
[CMMS1] C.-, Mayer, Mohaupt, Saueressig (JHEP '04).
Related work
[DV] Dyckmanns, Vaughan (JGP '17)

One-loop correction of the FS-metric I

Consider the FS-metric associated with a PSK domain \bar{M}. The following symmetric tensor field is called one loop correction of the FS-metric [RSV]:

$$
\begin{aligned}
g_{F S}^{c} & =\frac{\phi+c}{\phi} g_{\bar{M}}+\frac{1}{4 \phi^{2}} \frac{\phi+2 c}{\phi+c} d \phi^{2} \\
& +\frac{1}{4 \phi^{2}} \frac{\phi+c}{\phi+2 c}\left(d \tilde{\phi}+\sum\left(\zeta^{j} d \tilde{\zeta}_{j}-\tilde{\zeta}_{j} d \zeta^{j}\right)+i c(\bar{\partial}-\partial) \mathcal{K}\right)^{2} \\
& +\frac{1}{2 \phi} \sum d q_{a} \hat{g}^{a b} d q_{b}+\frac{2 c}{\phi^{2}} e^{\mathcal{K}}\left|\sum\left(X^{j} d \tilde{\zeta}_{j}+F_{j}(X) d \zeta^{j}\right)\right|^{2},
\end{aligned}
$$

where $c \in \mathbb{R}, X^{j}=z^{j} / z^{0}$ and

$$
\mathcal{K}=-\log \left(\sum X^{i} N_{i j} \bar{X}^{j}\right)
$$

is the Kähler potential for the projective special Kähler metric $g_{\bar{M}}$.

One-loop correction of the FS-metric II

Theorem [ACDM]

For $c \geq 0$, the one loop correction $g_{F S}^{c}$ defines a 1-parameter family of quaternionic Kähler metrics on $\bar{N}=\bar{M} \times G$ deforming the FS-metric $g_{F S}=g_{F S}^{0}$.

Sketch of proof

- Applying the rigid c-map to the underlying CASK mf. M we obtain a pseudo-HK mf. N.
- The ∇-horizontal lift of $2 J \xi$ defines a Killing v.f. Z on N satisfying the assumptions of the HK/QK-correspondence explained on the next slides.
- Applying the HK/QK-correspondence yields a 1-parameter family of pseudo-QK metrics, of which we determine the domain of positivity.
- Finally we check that this family coincides with the one loop correction of the FS-metric. \square

The HK/QK-correspondence I

The following result generalizes work of Haydys [Ha]:
Theorem [ACM]

- Let $\left(M, g, J_{1}, J_{2}, J_{3}\right)$ be a pseudo-HK mf. with a timelike or spacelike Killing v.f. Z s.t.
- $\mathcal{L}_{Z} J_{1}=0, \mathcal{L}_{Z} J_{2}=-2 J_{3}$,
- $\exists f: d f=-\omega_{1}(Z, \cdot), \omega_{1}=g\left(J_{1} \cdot, \cdot\right)$,
- f and $f_{1}:=f-g(Z, Z) / 2$ are nowhere zero.

Then from the data $\left(M, g, J_{1}, J_{2}, J_{3}, f\right)$ one can construct a pseudo-QK mf. $\left(M^{\prime}, g^{\prime}\right)$ with $\operatorname{dim} M^{\prime}=\operatorname{dim} M$. The signature of g^{\prime} depends only on that of g and the signs of f and f_{1}.

- Cases when $g^{\prime}>0$:
- $g^{\prime}>0$ of Ric >0 if $g>0$ and $f_{1}>0$ and
- $g^{\prime}>0$ of Ric <0 if either:
$g>0$ and $f<0$ or
g has signature ($4 k, 4$), $f<0$ and $f_{1}>0$.

The HK/QK-correspondence II

Remarks

- In [ACDM] we give a simple explicit formula for the QK-metric g^{\prime} obtained from the HK/QK-correspondence:

$$
g^{\prime}=\left.\frac{1}{2|f|} \tilde{g}_{P}\right|_{M^{\prime}}, \quad \tilde{g}_{P}:=g_{P}-\frac{2}{f} \sum_{a=0}^{3}\left(\theta_{a}^{P}\right)^{2}
$$

- where $P \rightarrow M$ is an S^{1}-principal bundle with connection η and curvature $\omega_{1}-\frac{1}{2} d \beta, \beta=g Z$, endowed with

$$
\begin{aligned}
g_{P} & =\frac{2}{f_{1}} \eta^{2}+g \\
\theta_{0}^{P} & =\frac{1}{2} d f, \theta_{1}^{P}=\eta+\frac{1}{2} \beta, \theta_{2}^{P}=\frac{1}{2} \omega_{3} Z, \theta_{3}^{P}=-\frac{1}{2} \omega_{2} Z
\end{aligned}
$$

- and $M^{\prime} \subset P$ is transversal to $Z_{1}^{P}=\tilde{Z}+f_{1} X_{P}$.

The HK/QK-correspondence III

Remarks (continued)

- Using this formula, we check that rigid c-map metric is mapped to 1-loop corrected sugra c-map metric by this correspondence.
- Similar result obtained in [APP] by applying twistor methods and the inverse construction, the QK/HK-correspondence.
- Simplest case is $\bar{M}=\{p t\} \rightarrow 1$-param. defo of $\mathbb{C} H^{2}$ by explicit complete QK metrics, see next slides. (Full domain of positivity of 1-loop correction has also components with incomplete metric, including one found by Haydys [Ha].)
- This example of the HK/QK-correspondence is also discussed in $[\mathrm{H}]$, but without the QK metric.
- \exists similar K/K-correspondence [ACM,ACDM] and a version in generalized geometry [CD]. \rightarrow related to Swann's twist [MS]
- \exists ASK/PSK-corresp. relating rigid and sugra r-map [CDiM].

Simplest example of a one-loop deformed QK metric: deformation of the universal hypermultiplet

Example
For $\bar{M}=p t$, i.e. $F=\frac{i}{2}\left(z^{0}\right)^{2}$, we have:

$$
\begin{aligned}
g^{c}= & \frac{1}{4 \phi^{2}}\left(\frac{\phi+2 c}{\phi+c} d \phi^{2}+\frac{\phi+c}{\phi+2 c}\left(d \tilde{\phi}+\zeta^{0} d \tilde{\zeta}_{0}-\tilde{\zeta}_{0} d \zeta^{0}\right)^{2}\right. \\
& \left.+2(\phi+2 c)\left(\left(d \tilde{\zeta}_{0}\right)^{2}+\left(d \zeta^{0}\right)^{2}\right)\right)
\end{aligned}
$$

with g^{0} the complex hyperbolic plane metric and g^{c} complete for $c \geq 0$.

Some properties of the one-loop deformed UHM, see [CS]

- Family g^{c} interpolates between the complex hyperbolic metric g^{0} and real hyperbolic metric.
- To see this we re-parametrize $c=1 / b$ and $\left(\phi, \tilde{\phi}, \zeta^{0}, \tilde{\zeta}_{0}\right)=\left(\phi^{\prime}, \tilde{\phi}^{\prime}, \sqrt{b} \zeta^{\prime 0}, \sqrt{b} \tilde{\zeta}_{0}^{\prime}\right)$, obtaining

$$
\begin{gathered}
h^{b}=\frac{1}{4 \phi^{\prime 2}}\left[\frac{b \phi^{\prime}+2}{b \phi^{\prime}+1} \mathrm{~d} \phi^{\prime 2}+\frac{b \phi^{\prime}+1}{b \phi^{\prime}+2}\left(\mathrm{~d} \tilde{\phi}^{\prime}+b \zeta^{\prime 0} \mathrm{~d} \tilde{\zeta}_{0}^{\prime}-b \tilde{\zeta}_{0}^{\prime} \mathrm{d} \zeta^{\prime 0}\right)^{2}\right. \\
\left.+2\left(b \phi^{\prime}+2\right)\left(\left(\mathrm{d} \tilde{\zeta}_{0}^{\prime}\right)^{2}+\left(\mathrm{d} \zeta^{\prime 0}\right)^{2}\right)\right],
\end{gathered}
$$

where $b>0$. Now the family can be extended to $b=0$.

- The metric h^{0} has constant negative curvature.
- Conformal structure at infinity acquires pole for $b>0$.
- The metric $g^{c}(c>0)$ is not only Einstein and half-conformally flat but of negative curvature and
- quarter-pinched: $\frac{1}{4}<\delta_{p}<1$ (limits attained as $\phi \rightarrow \infty, 0$).

Special geometry of Euclidean supersymmetry

Special geometries of $N=2$ Euclidean vector multiplets [CMSS1,CMMSS2,CM,CDMV]

d	susy	sugra
4	affine special para-Kähler	projective special para-Kähler
3	para-hyper-Kähler	para-quaternionic Kähler

Definition

- A para-Kähler manifold (M, g, J) is a pseudo-Riem. mf. (M, g) endowed with a parallel skew-symmetric endomorphism field J s.t. $J^{2}=\mathbb{1}$.
- A para-hyper-Kähler manifold $\left(M, g, J_{1}, J_{2}, J_{3}\right)$ is a pseudo-Riem. mf. (M, g) endowed 3 parallel skew-symm. endom. fields $J_{1}, J_{2}, J_{3}=J_{1} J_{2}=-J_{2} J_{1}$ s.t. $J_{1}^{2}=J_{2}^{2}=\mathbb{1}$.

Para-quaternionic Kähler manifolds

Definition

(i) An almost para-quaternionic structure on a manifold M is a subbundle $Q \subset \operatorname{End} T M$ s.t. $\forall p \in M \exists$ basis $(I, J, K=I J=-J I)$ of Q_{p} such that $I^{2}=J^{2}=\mathbb{1}$.
(ii) Let $\operatorname{dim} M>4$. A para-quaternionic Kähler structure on M is a pair (g, Q) consisting of a pseudo-Riem. metric and a parallel para-quat. structure $Q \subset \mathfrak{s o}(T M)$. The triple (M, g, Q) is called a para-quaternionic Kähler (para-QK) manifold.

Remarks

- If $\operatorname{dim} M=4$, in (ii) one has to require in addition $Q \cdot R=0$.
- para-QK \Longrightarrow Einstein.
- para-HK \Longrightarrow para-QK and Ric $=0$.
- \exists classification of symm. para-QK mfs. with Ric $\neq 0[\mathrm{AC}]$ and cont. families of symm. para-HK mfs. of np. gps. [ABCV,C].

Symmetric para-quaternionic Kähler manifolds I

Theorem [AC]

The following exhausts all s.c. symm. para-QK mfs. with Ric $\neq 0$ of classical groups:
A)

$$
\frac{S L(n+2, \mathbb{R})}{S\left(G L^{+}(2, \mathbb{R}) \times G L^{+}(n, \mathbb{R})\right)}, \quad \frac{S U(p+1, q+1)}{S(U(1,1) \times U(p, q))}
$$

BD)

$$
\frac{S O_{0}(p+2, q+2)}{S O_{0}(2,2) \times S O_{0}(p, q)}, \quad \frac{S O^{*}(2 n+4)}{S O^{*}(4) \times S O^{*}(2 n)},
$$

C)

$$
\frac{S p\left(\mathbb{R}^{2 n+2}\right)}{S p\left(\mathbb{R}^{2}\right) \times S p\left(\mathbb{R}^{2 n}\right)}
$$

Symmetric para-quaternionic Kähler manifolds II

Theorem [AC]
The following exhausts all s.c. symm. para-QK mfs. with Ric $\neq 0$ of exceptional groups:

$$
\begin{gathered}
\frac{E_{6(6)}}{S L(2, \mathbb{R}) \times S L(6, \mathbb{R})}, \\
\frac{E_{6(2)}}{S U(3,3) \times S U(1,1)}, \\
\frac{E_{7(7)}}{S L(2, \mathbb{R}) \times S \text { Sin } 0(6,6)}, \\
\frac{E_{7(-5)}}{S L(2, \mathbb{R}) \times S O^{*}(12)}, \frac{E_{6(-14)}}{S U, 1) \times S U(1,1)}, \\
\frac{E_{7(-25)}}{S L(2, \mathbb{R}) \times \operatorname{Spin}_{0}(10,2)}, \\
\operatorname{SL(2,\mathbb {R})\times E_{7(7)}}, \\
\frac{E_{8(-24)}}{S L(2, \mathbb{R}) \times E_{7(-25)}}, \\
\frac{F_{4(4)}}{S L(2, \mathbb{R}) \times S p\left(\mathbb{R}^{6}\right)}, \\
\frac{G_{2(2)}}{S O_{0}(2,2)} .
\end{gathered}
$$

Euclidean versions of the rigid r - and c -map

Theorem [CMSS1-2]

- \exists construction r_{4+0}^{4+1} (temporal r-map) which associates a para-ASK mf. with every ASR mf.
- \exists construction c_{3+0}^{3+1} (temporal c-map) which associates a para-HK mf. with every ASK mf.
- \exists construction c_{3+0}^{4+0} (Euclidean c-map) which associates a para-HK mf. with every para-ASK mf.
- The resulting diagram commutes up to isometry:

Euclidean versions of the supergravity r - and c-map

Theorem [CM,CDMV]

- Dimensional reduction of supergravity coupled to $N=2$ vector multiplets induces constructions summarized in the following diagram:

Open problem

- Does the diagram commute, up to isometry?

Example: reduction of pure 5-dim. supergravity

Theorem [CDM]

- Applying the the supergravity constructions $c_{3+0}^{3+1} \circ r_{3+1}^{4+1}$ and $c_{3+0}^{4+0} \circ r_{4+0}^{4+1}$ to the PSR mf. $\mathcal{H}=\{p t\}$ yields 2 different open orbits of the solvable Iwasawa subgroup of $G_{2(2)}$ on the para-QK symmetric space $G_{2(2)} / S O_{0}(2,2)$.
- In particular, the resulting manifolds are locally isometric to each other.

Temporal and Euclidean supergravity c-maps via HK/QK

Theorem [DV]

- The temporal and Euclidean supergravity c-maps and a one-parameter deformation thereof can be obtained from suitable generalizations of the HK/QK-correspondence.

