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Some references for Lecture IV

[CDJL] C.—, Dyckmanns, Juengling, Lindemann, math.DG:1701.7882
[CDS] C.—, Dyckmanns, Suhr (Springer INdAM ‘17)

[CNS] C.—, Nardmann, Suhr (CAG '16) (PLMS ‘14)

[CHM] C.—, Han, Mohaupt (CMP '12).

Plan of the fourth lecture:

> Motivation
» Completeness of PSR mfs.
» Completeness of PSK mfs.
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Main idea

Use supergravity constructions (and one-loop deformation) to
obtain new complete quaternionic Kahler manifolds

» Recall:

Theorem [CHM]

(i) The supergravity r-map maps complete PSR mfs. 3{ to
complete PSK mfs. M.

(i) The supergravity c-map maps complete PSK mfs. M to
complete QK mfs. N.

Problems

» Control completeness of the initial PSR or PSK manifold.

» Control completeness under the one-loop deformation.



Completeness of centroaffine hypersurfaces

Let H{ ¢ R™! be a centroaffine hypersurface with positive definite
centroaffine metric g.

We are interested in the relation between
1) closedness,
2) Euclidian completeness and

3) completeness (with respect to g).

Under natural assumptions:
3) =1) < 2).

Main problem:
Prove that 1) = 3) in some interesting cases.

Example: Theorem (Cheng and Yau, CPAM ‘89)
1) = 3) if H is an affine sphere, i.e. if V&v = 0.
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Completeness of higher dimensional PSR manifolds

Theorem [CNS]

A PSR manifold 3 C {h =1} C R"™! is complete if and only if
H C R™! s closed.

Corollary

Let H be a locally strictly convex component of the level set

{h =1} of a homogeneous cubic polynomial h on R"*1. Then 3
defines a complete quaternionic Kahler metric of negative scalar
curvature on R*"t8,

Applications

Using the Corollary we can construct many new explicit complete
QK manifolds and even families depending on an arbitrary number
of parameters, including multi-parameter defos of symm. spaces
[CDJL], as will be shown in the next lecture.
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Completeness of centroaffine hypersurfaces

Open problem

Does the theorem extend to (definite) centroaffine hypersurfaces
defined by homogeneous polynomials h of higher degree?

State of the art:

1. It holds for generic polynomials.

2. It does not hold for general (real analytic) functions.



Sketch of proof of the main theorem |

» Let 3 C R"*! be a Euclidian complete centroaffine
hypersurface with positive definite centroaffine metric g.

» We have to show that 3 is complete if H C {h =1} for a

homogeneous cubic polynomial h. Let us not assume this yet.
» Consider the open cone U = R>?. 3 c R"! and let k € R*.

Lemma 1

» There exists a unique smooth homogeneous function
h: U — R of degree k such that h|sc = 1.

» For every hyperplane E tangent to J{ the intersection
B:=UNE C E is a bounded convex domain.

¢©:B—H, x> h(x)"kx,

is a parametrization of K.
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Sketch of proof of the main theorem I

Lemma 2
In the above parametrization the centroaffine metric is given
k-1

1 e _
= —-—0?h+ ———dh?,
ET %k (kh)?

where h denotes the restriction of h to B and O denotes the flat
connection of the affine space E D B.

Lemma 3 _
Let k > 0. Assume that there exists ¢ € (0, k) such that f = “Vh
is concave. Then H is complete.

Sketch of pf. of Lemma 3

A calculation shows

k—c¢ 1 € = T
#= 1 () o™ > g




Sketch of proof of the main theorem IlI

Letv:/=[0,T)— B, T € (0,00], be a curve which is not
contained in any compact subset of Band I 2 t; — T.

» Then h(~(t;)) — 0 and the previous estimate implies

L6) = Loloa) 2 VE [

t,‘d
> VC/ — Inho~dt
o dt

= VClInh(y(t:)) — In h(7(0))] — oo

ddtlnhOfy‘dt

This finishes the proof of Lemma 3.
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Sketch of proof of the main theorem IV

Lemma 4
If his a cubic polynomial then Vh is concave

Lemma 4 shows that the assumptions of Lemma 3 are satisfied
with (k,€) = (3,1). This finishes the proof of the main
theorem. n

Proof of Lemma 4

» Consider a line x 4+ tv in E with x € B. lts intersection with
B corresponds to the segment t € (a, b):

» We check that ho(t) = h(x + tv) satisfies v/hy" < 0 on (a, b).

>

ahd?\/ho = 2hoh] — (Wp)? =: f, £ = 2hoh])

» Since hg > 0 on (a, b) and hy’ is constant, this shows that f is

monotone. = its values lie between f(a) < 0 and f(b) < 0.

L]
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Further results (about general centroaffine hypersurfaces):
The canonical Lorentzian metric on the open cone U

Proposition

Let 7 C R™*! be any Euclidian complete centroaffine hypersurface
with positive definite centroaffine metric , k > 1 and h the
corresponding homogeneous function of degree k. Then

1
= ——9%h
8L K

is a Lorentzian metric on U, which is globally hyperbolic iff H is
complete.
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Further results:
Regular boundary behaviour implies completeness

Let 7 C R™*! be any Euclidian complete centroaffine hypersurface
with positive definite centroaffine metric. We assume that k > 1
and that h extends to a smooth homogeneous function h: V — R
defined on some open subset V C R"*1 such that U\ {0} C V.

Definition
Under the above assumptions, we say that the hypersurface H has
regular boundary behaviour if
(i) dhy # 0 for all p € OU \ {0}. In particular, OU \ {0} is
smooth.
(i) —0?h is positive semi-definite on T(OU \ {0}) with only
one-dimensional kernel.
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Regular boundary behaviour implies completeness

Theorem [CNS]

Let H c R™*! be a Euclidian complete centroaffine hypersurface
with regular boundary behaviour. Then J is complete.
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Regular boundary behaviour is generic

» Let V C R™1 be an open subset and k > 1.

> Denote by F(V, k) C C°°(V) the set of homog. fcts. h of
deg. k s.t. 3 open cone U C V s.t. U\ {0} C V and s.t.

3(h, U) == {p € Ulh(p) = 1}

is Euclidian complete with g > 0.

» Put
Freg(V, k) := {h € F|FH(h, U) has reg. bdry. beh. for some U}.

Theorem [CNS]

Freg(V, k) C F(V, k) is open and dense (in the Fréchet topology).
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Regular boundary behaviour is generic:
Case of polynomial functions

» Denote by
P(k) C FR™L k),  Preg(k) C Freg(R™, k)

the subsets consisting of polynomial functions.

Theorem [CNS]
Preg(k) C P(k) is open and dense.
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Completeness of projective special Kahler manifolds |

Definition

A CASK manifold (M, J, g, V, &) is said to have regular boundary
behaviour if it admits an embedding i: M — M into a mf. with
boundary M s.t. i(M) =M\ OM and the tensor fields (J, g, &)
smoothly extend to M s.t. Vp € OM: f(p) =0, df, # 0 and

gp < 0on Hp = T,oM N J(T,OM) with kernel span{¢,, JE,},
where f = g(§,¢).

Definition

We will assume that &, J¢ generate a principal C*-action on M with
compact quotient M := M/C*. Then the interior M = M \ oM is
called a PSK manifold with regular boundary behaviour.

Theorem [CDS]

Projective special Kahler manifolds with regular boundary

behaviour are complete.
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Completeness of projective special Kahler manifolds ||

Sketch of proof

>

>

>

Consider underlying CASK mf. (M, J,g,V,&), M =M\ oM.

Step 1: Vp € OM : g, is nondeg. of signature (2,2n).

Consider v : [0, b) — M not contained in any cp. subset,
0 < b<oo. = « has an accumulation pt. pp € OM.

Case 1: = has no other accumulation pt.
Case 2: 7 has a 2nd accum. pt.
Case 1 == V nbh. of pyp Ja € (0, b) : ¥([a, b)) C that nbh.

By Step 1, 3 cx. hypersurf. N C M through py € 7~ 1(pg) s.t.

—g >00n TN. On N := NN M the PSK metric g satisfies:

(m8)| T = <—i - W)

df?
w A2

Y

™N
where a = g(&,-) = %df_ = L(y) = o0.
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Completeness of projective special Kahler manifolds |ll

Sketch of proof continued

» Case 2: Use the estimate

which holds near pg, where g’ > 0 (as a tensor on N).

» Any curve with initial pt. in a small g’-ball B;/>(po) and
endpoint outside Bs(pp) has length > ¢ > 0.

» Since v has accumulation points py # p1, there exists § > 0
such that p1 & Bss)2(po)-

» Then «y passes trough Bjs/(po) and leaves Bs(po) an arbitrarily
large number k of times. = L(v) > kc — . O

18/18



	References
	Main idea
	Completeness of centroaffine hypersurfaces
	Completeness of PSR manifolds
	Completeness of PSR manifolds
	Further results

