Lecture IV: Completeness Results

Vicente Cortés
Department of Mathematics
University of Hamburg

Winter School "Geometry, Analysis, Physics" Geilo (Norway), March 4-10, 2018

Some references for Lecture IV

[CDJL] C.-, Dyckmanns, Juengling, Lindemann, math.DG:1701.7882
[CDS] C.-, Dyckmanns, Suhr (Springer INdAM '17)
[CNS] C.-, Nardmann, Suhr (CAG '16) (PLMS ‘14)
[CHM] C.-, Han, Mohaupt (CMP ‘12).
Plan of the fourth lecture:

- Motivation
- Completeness of PSR mfs.
- Completeness of PSK mfs.

Main idea

Use supergravity constructions (and one-loop deformation) to obtain new complete quaternionic Kähler manifolds

- Recall:

Theorem [CHM]
(i) The supergravity r-map maps complete PSR mfs. \mathcal{H} to complete PSK mfs. \bar{M}.
(ii) The supergravity c-map maps complete PSK mfs. \bar{M} to complete QK mfs. \bar{N}.

Problems

- Control completeness of the initial PSR or PSK manifold.
- Control completeness under the one-loop deformation.

Completeness of centroaffine hypersurfaces

Let $\mathcal{H} \subset \mathbb{R}^{n+1}$ be a centroaffine hypersurface with positive definite centroaffine metric g.

We are interested in the relation between

1) closedness,
2) Euclidian completeness and
3) completeness (with respect to g).

Under natural assumptions:
$3) \Longrightarrow 1) \Longleftrightarrow 2$).
Main problem:
Prove that 1$) \Longrightarrow 3$) in some interesting cases.
Example: Theorem (Cheng and Yau, CPAM '89)
$1) \Longrightarrow 3)$ if \mathcal{H} is an affine sphere, i.e. if $\nabla^{g} \nu=0$.

Completeness of higher dimensional PSR manifolds

Theorem [CNS]

A PSR manifold $\mathscr{H} \subset\{h=1\} \subset \mathbb{R}^{n+1}$ is complete if and only if $\mathcal{H} \subset \mathbb{R}^{n+1}$ is closed.

Corollary
Let \mathcal{H} be a locally strictly convex component of the level set $\{h=1\}$ of a homogeneous cubic polynomial h on \mathbb{R}^{n+1}. Then \mathcal{H} defines a complete quaternionic Kähler metric of negative scalar curvature on $\mathbb{R}^{4 n+8}$.

Applications
Using the Corollary we can construct many new explicit complete QK manifolds and even families depending on an arbitrary number of parameters, including multi-parameter defos of symm. spaces [CDJL], as will be shown in the next lecture.

Completeness of centroaffine hypersurfaces

Open problem
Does the theorem extend to (definite) centroaffine hypersurfaces defined by homogeneous polynomials h of higher degree?

State of the art:

1. It holds for generic polynomials.
2. It does not hold for general (real analytic) functions.

Sketch of proof of the main theorem I

- Let $\mathcal{H} \subset \mathbb{R}^{n+1}$ be a Euclidian complete centroaffine hypersurface with positive definite centroaffine metric g.
- We have to show that \mathcal{H} is complete if $\mathcal{H} \subset\{h=1\}$ for a homogeneous cubic polynomial h. Let us not assume this yet.
- Consider the open cone $U=\mathbb{R}^{>0} \cdot \mathcal{H} \subset \mathbb{R}^{n+1}$ and let $k \in \mathbb{R}^{*}$.

Lemma 1

- There exists a unique smooth homogeneous function $h: U \rightarrow \mathbb{R}$ of degree k such that $\left.h\right|_{\mathcal{H}}=1$.
- For every hyperplane E tangent to \mathcal{H} the intersection $B:=U \cap E \subset E$ is a bounded convex domain.

$$
\varphi: B \rightarrow \mathcal{H}, \quad x \mapsto h(x)^{-1 / k} x
$$

is a parametrization of \mathcal{H}.

Sketch of proof of the main theorem II

Lemma 2
In the above parametrization the centroaffine metric is given

$$
g=-\frac{1}{k \bar{h}} \partial^{2} \bar{h}+\frac{k-1}{(k \bar{h})^{2}} d \bar{h}^{2}
$$

where \bar{h} denotes the restriction of h to B and ∂ denotes the flat connection of the affine space $E \supset B$.
Lemma 3
Let $k>0$. Assume that there exists $\varepsilon \in(0, k)$ such that $f=\sqrt[k-\varepsilon]{\bar{h}}$ is concave. Then \mathcal{H} is complete.

Sketch of pf. of Lemma 3
A calculation shows

$$
g=\frac{k-\varepsilon}{f}\left(-\frac{1}{k} \partial^{2} f\right)+\frac{\varepsilon}{(k-\varepsilon)(k \bar{h})^{2}} d \bar{h}^{2} \geq \underbrace{\frac{\varepsilon}{k^{2}(k-\varepsilon)}}_{C:=}(d \ln \bar{h})^{2} .
$$

Sketch of proof of the main theorem III

Let $\gamma: I=[0, T) \rightarrow B, T \in(0, \infty]$, be a curve which is not contained in any compact subset of B and $I \ni t_{i} \rightarrow T$.

- Then $h\left(\gamma\left(t_{i}\right)\right) \rightarrow 0$ and the previous estimate implies

$$
\begin{aligned}
L(\gamma) & \geq L\left(\gamma \mid\left[0, t_{i}\right]\right) \geq \sqrt{C} \int_{0}^{t_{i}}\left|\frac{d}{d t} \ln h \circ \gamma\right| d t \\
& \geq \sqrt{C}\left|\int_{0}^{t_{i}} \frac{d}{d t} \ln h \circ \gamma d t\right| \\
& =\sqrt{C}\left|\ln h\left(\gamma\left(t_{i}\right)\right)-\ln h(\gamma(0))\right| \rightarrow \infty
\end{aligned}
$$

This finishes the proof of Lemma 3.

Sketch of proof of the main theorem IV

Lemma 4

If h is a cubic polynomial then $\sqrt{\bar{h}}$ is concave

Lemma 4 shows that the assumptions of Lemma 3 are satisfied with $(k, \epsilon)=(3,1)$. This finishes the proof of the main theorem.

Proof of Lemma 4

- Consider a line $x+t v$ in E with $x \in B$. Its intersection with B corresponds to the segment $t \in(a, b)$:
- We check that $h_{0}(t)=h(x+t v)$ satisfies ${\sqrt{h_{0}}}^{\prime \prime} \leq 0$ on (a, b).

$$
4 h_{0}^{3 / 2} \sqrt{h_{0}^{\prime \prime}}=2 h_{0} h_{0}^{\prime \prime}-\left(h_{0}^{\prime}\right)^{2}=: f, \quad f^{\prime}=2 h_{0} h_{0}^{\prime \prime \prime}
$$

- Since $h_{0}>0$ on (a, b) and $h_{0}^{\prime \prime \prime}$ is constant, this shows that f is monotone. \Longrightarrow its values lie between $f(a) \leq 0$ and $f(b) \leq 0$.

Further results (about general centroaffine hypersurfaces): The canonical Lorentzian metric on the open cone U

Proposition

Let $\mathcal{H} \subset \mathbb{R}^{n+1}$ be any Euclidian complete centroaffine hypersurface with positive definite centroaffine metric, $k>1$ and h the corresponding homogeneous function of degree k. Then

$$
g_{L}:=-\frac{1}{k} \partial^{2} h
$$

is a Lorentzian metric on U, which is globally hyperbolic iff \mathcal{H} is complete.

Further results:

Regular boundary behaviour implies completeness

Let $\mathcal{H} \subset \mathbb{R}^{n+1}$ be any Euclidian complete centroaffine hypersurface with positive definite centroaffine metric. We assume that $k>1$ and that h extends to a smooth homogeneous function $h: V \rightarrow \mathbb{R}$ defined on some open subset $V \subset \mathbb{R}^{n+1}$ such that $\bar{U} \backslash\{0\} \subset V$.

Definition
Under the above assumptions, we say that the hypersurface \mathcal{H} has regular boundary behaviour if
(i) $d h_{p} \neq 0$ for all $p \in \partial U \backslash\{0\}$. In particular, $\partial U \backslash\{0\}$ is smooth.
(ii) $-\partial^{2} h$ is positive semi-definite on $T(\partial U \backslash\{0\})$ with only one-dimensional kernel.

Regular boundary behaviour implies completeness

Theorem [CNS]
Let $\mathcal{H} \subset \mathbb{R}^{n+1}$ be a Euclidian complete centroaffine hypersurface with regular boundary behaviour. Then \mathcal{H} is complete.

Regular boundary behaviour is generic

- Let $V \subset \mathbb{R}^{n+1}$ be an open subset and $k>1$.
- Denote by $\mathcal{F}(V, k) \subset C^{\infty}(V)$ the set of homog. fcts. h of deg. k s.t. \exists open cone $U \subset V$ s.t. $\bar{U} \backslash\{0\} \subset V$ and s.t.

$$
\mathcal{H}(h, U):=\{p \in U \mid h(p)=1\}
$$

is Euclidian complete with $g>0$.

- Put
$\mathcal{F}_{\text {reg }}(V, k):=\{h \in \mathcal{F} \mid \mathcal{H}(h, U)$ has reg. bdry. beh. for some $U\}$.

Theorem [CNS]

$\mathcal{F}_{\text {reg }}(V, k) \subset \mathcal{F}(V, k)$ is open and dense (in the Fréchet topology).

Regular boundary behaviour is generic: Case of polynomial functions

- Denote by

$$
\mathcal{P}(k) \subset \mathcal{F}\left(\mathbb{R}^{n+1}, k\right), \quad \mathcal{P}_{r e g}(k) \subset \mathcal{F}_{r e g}\left(\mathbb{R}^{n+1}, k\right)
$$

the subsets consisting of polynomial functions.
Theorem [CNS]
$\mathcal{P}_{\text {reg }}(k) \subset \mathcal{P}(k)$ is open and dense.

Completeness of projective special Kähler manifolds I

Definition
A CASK manifold (M, J, g, ∇, ξ) is said to have regular boundary behaviour if it admits an embedding $i: M \rightarrow \mathcal{M}$ into a mf. with boundary \mathcal{M} s.t. $i(M)=\mathcal{M} \backslash \partial \mathcal{M}$ and the tensor fields (J, g, ξ) smoothly extend to \mathcal{M} s.t. $\forall p \in \partial \mathcal{M}: f(p)=0, d f_{p} \neq 0$ and $g_{p} \leq 0$ on $\mathcal{H}_{p}:=T_{p} \partial \mathcal{M} \cap J\left(T_{p} \partial \mathcal{M}\right)$ with kernel $\operatorname{span}\left\{\xi_{p}, J \xi_{p}\right\}$, where $f=g(\xi, \xi)$.

Definition
We will assume that $\xi, J \xi$ generate a principal \mathbb{C}^{*}-action on \mathcal{M} with compact quotient $\overline{\mathcal{M}}:=\mathcal{M} / \mathbb{C}^{*}$. Then the interior $\bar{M}=\overline{\mathcal{M}} \backslash \partial \overline{\mathcal{M}}$ is called a PSK manifold with regular boundary behaviour.

Theorem [CDS]
Projective special Kähler manifolds with regular boundary behaviour are complete.

Completeness of projective special Kähler manifolds II

Sketch of proof

- Consider underlying CASK mf. $(M, J, g, \nabla, \xi), M=\mathcal{M} \backslash \partial \mathcal{M}$.
- Step 1: $\forall p \in \partial \mathcal{M}: g_{p}$ is nondeg. of signature $(2,2 n)$.
- Consider $\gamma:[0, b) \rightarrow \bar{M}$ not contained in any cp. subset, $0<b \leq \infty . \Longrightarrow \gamma$ has an accumulation pt. $\bar{p}_{0} \in \partial \overline{\mathcal{M}}$.
- Case 1: γ has no other accumulation pt.
- Case 2: γ has a 2nd accum. pt.
- Case $1 \Longrightarrow \forall$ nbh. of $\bar{p}_{0} \exists a \in(0, b): \gamma([a, b)) \subset$ that nbh.
- By Step $1, \exists \mathrm{cx}$. hypersurf. $\mathcal{N} \subset \mathcal{M}$ through $p_{0} \in \pi^{-1}\left(\bar{p}_{0}\right)$ s.t. $-g>0$ on $T \mathcal{N}$. On $N:=\mathcal{N} \cap M$ the PSK metric \bar{g} satisfies:

$$
\left.\left(\pi^{*} \bar{g}\right)\right|_{T N}=\left.\left(-\frac{g}{f}+\frac{\alpha^{2}+\left(J^{*} \alpha\right)^{2}}{f^{2}}\right)\right|_{T N} \geq\left.\frac{d f^{2}}{4 f^{2}}\right|_{T N}
$$

where $\alpha=g(\xi, \cdot)=\frac{1}{2} d f . \Longrightarrow L(\gamma)=\infty$.

Completeness of projective special Kähler manifolds III

Sketch of proof continued

- Case 2: Use the estimate

$$
\left.\left(\pi^{*} \bar{g}\right)\right|_{T N} \geq-\left.\frac{g}{f}\right|_{T N} \geq-\left.\frac{1}{\epsilon} g\right|_{T N}=: g^{\prime},
$$

which holds near \bar{p}_{0}, where $g^{\prime}>0$ (as a tensor on \mathcal{N}).

- Any curve with initial pt. in a small g^{\prime}-ball $B_{\delta / 2}\left(\bar{p}_{0}\right)$ and endpoint outside $B_{\delta}\left(\bar{p}_{0}\right)$ has length $\geq c>0$.
- Since γ has accumulation points $\bar{p}_{0} \neq \bar{p}_{1}$, there exists $\delta>0$ such that $\bar{p}_{1} \notin B_{3 \delta / 2}\left(\bar{p}_{0}\right)$.
- Then γ passes trough $B_{\delta / 2}\left(\bar{p}_{0}\right)$ and leaves $B_{\delta}\left(\bar{p}_{0}\right)$ an arbitrarily large number k of times. $\Longrightarrow L(\gamma) \geq k c \rightarrow \infty$.

