Lecture V: Construction of Complete Quaternionic Kähler Manifolds

Vicente Cortés
Department of Mathematics
University of Hamburg

Winter School "Geometry, Analysis, Physics"
Geilo (Norway), March 4-10, 2018

Some references for Lecture V

[CDJL] C.-, Dyckmanns, Juengling, Lindemann, math.DG:1701.7882
[CDS] C.-, Dyckmanns, Suhr (Springer INdAM '17)
[CDL] C.-, Dyckmanns, Lindemann (PLMS '14)
[CHM] C.-, Han, Mohaupt (CMP '12).
[L] LeBrun (Duke '91).
Plan of the fifth lecture:

- Completeness results for the one-loop deformation.
- Classification results for complete PSR mfs. and corresponding QK mfs.

Completeness of the one-loop corrected c-map metric

Theorem [CDS]
Let (\bar{M}, \bar{g}) be a PSK manifold with regular boundary behaviour. Then the corresponding one-loop deformation $g_{F S}^{c}$ is a family of complete QK metrics for $c \geq 0$.

Consider the supergravity q-map, which is the composition of the supergravity r - and c-maps.

Theorem [CDS,CHM]

The one-loop deformed sugra q-map associates a family of complete QK manifolds of dim. $4 n+8$ (of scal <0) depending on a parameter $c \geq 0$ with every complete projective special real manifold of dimension n.
\Longrightarrow it is interesting to classify complete PSR manifolds

One-loop deformation of symmetric spaces

Corollary [CDS]

All known homog. QK mfs. of scal <0 can be deformed in this way by complete QK manifolds, with exception of $\mathbb{H} H^{n}$.

Proof

- All of these homog. spaces with exception of $\mathrm{Gr}_{2}\left(\mathbb{C}^{n+3}\right)^{*}$ are in the image of the q-map.
- $G r_{2}\left(\mathbb{C}^{n+3}\right)^{*}=c\left(\mathbb{C} H^{n}\right)$ and the PSK manifold $\mathbb{C} H^{n}$ has regular boundary behaviour.

Remark

The quaternionic hyperbolic spaces $\mathbb{H} H^{n}$ were already known to admit deformations by complete QK metrics [L].

Classification of complete PSR curves and surfaces

Theorem [CHM]

There are only 2 complete PSR curves (up to equivalence):
i) $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2} y=1, x>0\right\}$,
ii) $\left\{(x, y) \in \mathbb{R}^{2} \mid x\left(x^{2}-y^{2}\right)=1, x>0\right\}$.

Theorem [CDL]

There are only 5 discrete examples and a 1-parameter family of complete PSR surfaces:
a) $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x y z=1, x>0, y>0\right\}$,
b) $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x\left(x y-z^{2}\right)=1, x>0\right\}$,
c) $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x\left(y z+x^{2}\right)=1, x<0, y>0\right\}$,
d) $\left\{(x, y, z) \in \mathbb{R}^{3} \mid z\left(x^{2}+y^{2}-z^{2}\right), z<0\right\}$,
e) $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x\left(y^{2}-z^{2}\right)+y^{3}=1, y<0, x>0\right\}$,
f) $\left\{\cdots \mid y^{2} z-4 x^{3}+3 x z^{2}+b z^{3}=1, z<0,2 x>z\right\}, b \in(-1,1)$.

- q-map \rightarrow complete QK manifolds of co-homogeneity ≤ 2.

Classification of complete PSR manifolds with reducible cubic polynomial

Theorem[CDJL]

Every complete PSR manifold $\mathcal{H} \subset\{h=1\} \subset \mathbb{R}^{n+1}, n \geq 2$, for which h is reducible is linearly equivalent to exactly one of the following:
a) $\left\{x_{n+1}\left(\sum_{i=1}^{n-1} x_{i}^{2}-x_{n}^{2}\right)=1, x_{n+1}<0, x_{n}>0\right\}$,
b) $\left\{\left(x_{1}+x_{n+1}\right)\left(\sum_{i=1}^{n} x_{i}^{2}-x_{n+1}^{2}\right)=1, \quad x_{1}+x_{n+1}<0\right\}$,
c) $\left\{x_{1}\left(\sum_{i=1}^{n} x_{i}^{2}-x_{n+1}^{2}\right)=1, \quad x_{1}<0, x_{n+1}>0\right\}$,
d) $\left\{x_{1}\left(x_{1}^{2}-\sum_{i=2}^{n+1} x_{i}^{2}\right)=1, \quad x_{1}>0\right\}$.

- Under the q-map, these are mapped to complete QK manifolds of co-homogeneity ≤ 1.
- The series d) is mapped to a series of complete QK manifolds of co-homogeneity 1 .

