Remez inequality and propagation of smallness for solutions of second order elliptic PDEs **Part I. Classical Remez inequality, analytic propagation of smallness**

> Eugenia Malinnikova NTNU

> > March 2018

E. Malinnikova Propagation of smallness for elliptic PDEs

Chebyshev polynomials

Definition The *n*-th Chebyshev polynomial of the fist kind is the polynomial T_n of degree *n* which satisfies the identity

$$T_n(\cos t) = \cos nt.$$

Clearly $T_1(x) = x$, $T_2(x) = 2x^2 - 1$ and the trigonometric formula

$$\cos(n+1)t + \cos(n-1)t = 2\cos nt\cos t$$

implies the recursive formula for T_n

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$$

E. Malinnikova Propagation of smallness for elliptic PDEs

San

Properties

- Leading coefficient: $T_n(x) = 2^{n-1}x^n + ... + c_n$
- Alternating min-max: We fix *n* and let $x_k = \cos(k\pi/n)$, k = 0, ..., n. Then $T_n(x_k) = (-1)^k$, $-1 = x_n < x_{n-1} < ... < x_k < ... < x_1 < x_0 = 1$.
- Extremal property:

$$\max_{-1 \le x \le 1} |T_n(x)| = 1 \le 2^{n-1} \max_{-1 \le x \le 1} |P_n(x)|$$

for any $P_n(x) = x^n + a_{n-1}x^{n-1} + ... + a_0$ (monic polynomial of degree n.)

• Formula
$$2T_n(x) = (x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n$$

Remez inequality

Theorem (Remez, 1936) Let *E* be a measurable subset of an interval *I* and |E| = m. Then for any polynomial P_n of degree *n*

$$\max_{x\in I} |P_n(x)| \leq T_n\left(1 + \frac{2(|I|-m)}{m}\right) \max_{x\in E} |P_n(x)|$$

The equality is attained when $P_n(x) = CT_n(2x/m)$, I = (-m/2, m/2 + a) and E = (-m/2, m/2). Corollary

$$\max_{x \in I} |P_n(x)| \le \left(\frac{4|I|}{|E|}\right)^n \max_{x \in E} |P_n(x)|$$

E. Malinnikova Propagation of smallness for elliptic PDEs

Tool: Lagrange interpolation formula

If *P* is a polynomial of degree $\leq n$ and $y_0, ..., y_n$ are distinct points then

$$P(y) = \sum_{j=1}^n P(y_j) \prod_{k \neq j} \frac{y - y_k}{y_j - y_k}$$

Proof of Remez inequality Renormalize to have |E| = 2, I = [-1, 1 + a]. Then find $y_j \in E$ such that $|y_j - y_k| \ge |x_j - x_k|$ (extremal points for Chebyshev polynomial) and $|1 + a - y_j| \ge |1 + a - x_j|$ and compare interpolation formulas for $P_n(1 + a)$ and $T_n(1 + a)$.

E. Malinnikova Propagation of smallness for elliptic PDEs

San

Turan-Nazarov inequality for exponential sums

Let $F_n(x) = \sum_{k=0}^n a_k e^{i\lambda_k x}$. Theorem (Nazarov, 1993) Let E be a measurable subset of an interval I and |E| = m. (i) If all $\lambda_k \in \mathbf{R}$ then

$$\max_{x\in I} |F_n(x)| \le \left(\frac{C|I|}{|E|}\right)^n \max_{x\in E} |F_n(x)|$$

(ii) If $\lambda_k \in C$ we define $s = \max |Im\lambda_k|$, then

$$\max_{x \in I} |F_n(x)| \le e^{s|I|} \left(\frac{C|I|}{|E|}\right)^n \max_{x \in E} |F_n(x)|$$

E. Malinnikova Propagation of smallness for elliptic PDEs

Reformulation of Remez inequality

The Remez inequality is equivalent to

$$|E| \leq 4|I| \left(\frac{\max_{x \in E} |P_n(x)|}{\max_{x \in I} |P_n(x)|}\right)^{1/n}$$

We rewrite it as

$$|E_{\delta}| \leq 4|I|\delta^{1/n},$$

where

$$E_{\delta} = \{x \in I : |P_n(x)| < \delta \max_{x \in I} |P_n(x)|\}.$$

E. Malinnikova Propagation of smallness for elliptic PDEs

.

na a

Classical results of Cartan and Polya

Let $P_n(z) = z^n + ...$ be a monic polynomial of degree n. Lemma (Cartan, 1928) Let $F_s = \{z \in \mathbb{C} : |P_n(z)| \le s^n\}$ and let $\alpha > 0$ then there are disks $B_j(z_j, r_j)$ such that

$$F_s \subset \cup_j B_j, \quad \sum_j r_j^lpha \leq e(2s)^lpha$$

For $\alpha = 2$ one obtains an estimate for the measure of the set $|F_s|$. The sharp result here is due to Polya (1928) and it says that

$$|F_s| \le \pi s^2.$$

E. Malinnikova Propagation of smallness for elliptic PDEs

Hadamard three circle theorem

Theorem Suppose that f is an analytic function in the domain $\{r_0 < |z| < R\}$. Let $M(r) = \max_{|z|=r} |f(z)|$ and $r_0 < r_1 < r_2 < r_3 < R$. Then

$$M(r_2) \leq M(r_1)^{\alpha} M(r_3)^{1-\alpha}, \quad \text{where } r_2 = r_1^{\alpha} r_3^{1-\alpha}.$$

It follows from the maximum principle for (sub)harmonic function $h(z) = \log |z^a f(z)|$. We have

$$r_2^a M(r_2) \le \max\{r_1^a M(r_1), r_3^a M(r_3)\}$$

and choose a such that $r_1^a M(r_1) = r_3^a M(r_3)$, then

$$r_2^a M(r_2) \leq (r_1^a M(r_2))^{\alpha} (r_3^a M(r_3))^{1-\alpha}$$

E. Malinnikova

Propagation of smallness for elliptic PDEs

San

Two-constant theorem

Theorem

Suppose that f is a bounded analytic function in a Jordan domain Ω such that $|f(z)| \leq M$ in Ω and $|f(\zeta)| \leq m$ when $\zeta \in E \subset \partial \Omega$. Then for any $z \in \Omega$

$$|f(z)| \leq m^{\omega_{\mathcal{E}}(z)} M^{1-\omega_{\mathcal{E}}(z)},$$

where $\omega_E(z)$ is the harmonic measure of E at point z. In other words, ω_E is the harmonic function with boundary values 1 on E and 0 on $\partial \Omega \setminus E$. We once again use the maximum principle and compare $\log |f(z)|$ to $\omega_E(z) \log m + (1 - \omega_E(z)) \log M$.

Propagation of smallness for real analytic functions

Suppose that u is a real-analytic function in the unite ball $B \subset \mathbf{R}^d$, u extends to a holomorphic function U in $O \subset \mathbf{C}^d$ such that $O \cap \mathbf{R}^d \supset B$ and $|U| \leq M$ in O. Suppose that $E \subset 1/2B$, |E| > 0 and $\max_E |u| \leq m$. Then

$$\max_{1/2B}|u|\leq Cm^{\beta}M^{1-\beta},$$

where β depends on O and on |E|.

Theorem (Hayman, 1970)

Suppose that u is a harmonic function in B that satisfies $\max_{B} |u| \leq M$. Then there exists a holomorphic function U in $B_{C}(1/\sqrt{2})$ such that U(x) = u(x) when $x \in B_{R}(1/\sqrt{2})$ and $|U(z)| \leq C(|z|)M$ when $|z| < 1/\sqrt{2}$.

Łojasiewicz inequality

Suppose that f is a non-zero real analytic function in $B \subset \mathbb{R}^n$, $Z_f = f^{-1}(0)$,. Then Z_f has dimension n - 1, $Z_f = \bigcup_{j=0}^{n-1} A_j$, where A_j is a countable union of j-dimensional manifolds.

Let $Z_f \cap B_1 \neq \emptyset$. Then for any compact subset $K \subset B$ there exists c > 0 and β such that

$$|f(x)| \ge c \operatorname{dist}(x, Z_f)^{\beta}, \quad x \in K,$$

 β is called the Łojasiewicz exponent of f (in K).

In particular

$$E_\delta = \{x \in \mathcal{K}: |f(x)| < \delta \max_B |f|\} \subset \mathcal{K} \cap (Z_f) + B(0, c_1 \delta^{1/eta}),$$

where $D + B(0, \epsilon)$ is the ϵ -neighborhood of a set D.

E. Malinnikova Propagation of smallness for elliptic PDEs

Second order elliptic equations

We study operators of the form

$$Lf = div(A\nabla f),$$

where $A(x) = [a_{ij}(x)]_{1 \le i,j \le d}$ is a symmetric matrix with Lipschitz entries and

$$\Lambda^{-1} \|v\|^2 \leq (A(x)v, v) \leq \Lambda \|v\|^2$$

uniformly in x.

We will study local properties of solutions to the equation Lf = 0 and changing the coordinates assume that L is a small perturbation of the Laplacian.

(日) (同) (王) (王) (王) (王)

Harnack inequality and comparison of norms

Suppose that Lf = 0 in $B_1 \subset \mathbf{R}^d$ and $f \ge 0$ in B_1 then

$$\max_{B_{1/2}} f \leq C_H \min_{B_{1/2}} f.$$

In particular $E_{\delta}(f) = \{x \in B_{1/2} : |f(x)| < \delta \max_{B_{1/2}} |f|\}$ is empty when δ is sufficiently small.

We will also use the following inequality (equivalence of norms) for any solution f of Lf = 0 in B_1 we have

$$\frac{1}{|S_{1/2}|} \int_{S_{1/2}} |f|^2 \leq \max_{B_{1/2}} |f|^2 \leq C \frac{1}{|S_1|} \int_{S_1} |f|^2.$$

E. Malinnikova Propagation of smallness for elliptic PDEs