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Chebyshev polynomials

Definition
The n-th Chebyshev polynomial of the fist kind is the
polynomial Tn of degree n which satisfies the identity

Tn(cos t) = cos nt.

Clearly T1(x) = x , T2(x) = 2x2 − 1 and the trigonometric
formula

cos(n + 1)t + cos(n − 1)t = 2 cos nt cos t

implies the recursive formula for Tn

Tn+1(x) = 2xTn(x)− Tn−1(x).
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Properties

• Leading coefficient: Tn(x) = 2n−1xn + ... + cn

• Alternating min-max: We fix n and let xk = cos(kπ/n),
k = 0, ..., n. Then Tn(xk) = (−1)k ,
−1 = xn < xn−1 < ... < xk < ... < x1 < x0 = 1.

• Extremal property:

max
−1≤x≤1

|Tn(x)| = 1 ≤ 2n−1 max
−1≤x≤1

|Pn(x)|

for any Pn(x) = xn + an−1xn−1 + ... + a0 (monic
polynomial of degree n.)

• Formula 2Tn(x) = (x +
√
x2 − 1)n + (x −

√
x2 − 1)n
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Remez inequality

Theorem (Remez, 1936)
Let E be a measurable subset of an interval I and |E | = m.
Then for any polynomial Pn of degree n

max
x∈I
|Pn(x)| ≤ Tn

(
1 +

2(|I | −m)

m

)
max
x∈E
|Pn(x)|

The equality is attained when Pn(x) = CTn(2x/m),
I = (−m/2,m/2 + a) and E = (−m/2,m/2).

Corollary

max
x∈I
|Pn(x)| ≤

(
4|I |
|E |

)n

max
x∈E
|Pn(x)|
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Tool: Lagrange interpolation formula

If P is a polynomial of degree ≤ n and y0, ..., yn are distinct
points then

P(y) =
n∑

j=1

P(yj)
∏
k 6=j

y − yk

yj − yk

Proof of Remez inequality
Renormalize to have |E | = 2, I = [−1, 1 + a]. Then find
yj ∈ E such that |yj − yk | ≥ |xj − xk | (extremal points for
Chebyshev polynomial) and |1 + a − yj | ≥ |1 + a − xj | and
compare interpolation formulas for Pn(1 + a) and Tn(1 + a).
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Turan-Nazarov inequality for exponential sums

Let Fn(x) =
∑n

k=0 ake iλkx .

Theorem (Nazarov, 1993)
Let E be a measurable subset of an interval I and |E | = m.
(i) If all λk ∈ R then

max
x∈I
|Fn(x)| ≤

(
C |I |
|E |

)n

max
x∈E
|Fn(x)|

(ii) If λk ∈ C we define s = max |Imλk |, then

max
x∈I
|Fn(x)| ≤ es|I |

(
C |I |
|E |

)n

max
x∈E
|Fn(x)|
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Reformulation of Remez inequality

The Remez inequality is equivalent to

|E | ≤ 4|I |
(
maxx∈E |Pn(x)|
maxx∈I |Pn(x)|

)1/n

.

We rewrite it as
|Eδ| ≤ 4|I |δ1/n,

where
Eδ = {x ∈ I : |Pn(x)| < δmax

x∈I
|Pn(x)|}.
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Classical results of Cartan and Polya

Let Pn(z) = zn + ... be a monic polynomial of degree n.

Lemma (Cartan, 1928)
Let Fs = {z ∈ C : |Pn(z)| ≤ sn} and let α > 0 then there are
disks Bj(zj , rj) such that

Fs ⊂ ∪jBj ,
∑

j

rαj ≤ e(2s)α

For α = 2 one obtains an estimate for the measure of the set
|Fs |. The sharp result here is due to Polya (1928) and it says
that

|Fs | ≤ πs2.
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Hadamard three circle theorem

Theorem
Suppose that f is an analytic function in the domain
{r0 < |z | < R}. Let M(r) = max|z|=r |f (z)| and
r0 < r1 < r2 < r3 < R. Then

M(r2) ≤ M(r1)αM(r3)1−α, where r2 = rα1 r
1−α
3 .

It follows from the maximum principle for (sub)harmonic
function h(z) = log |zaf (z)|. We have

r a
2M(r2) ≤ max{r a

1M(r1), r a
3M(r3)}

and choose a such that r a
1M(r1) = r a

3M(r3), then

r a
2M(r2) ≤ (r a

1M(r2))α(r a
3M(r3))1−α
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Two-constant theorem

Theorem
Suppose that f is a bounded analytic function in a Jordan
domain Ω such that |f (z)| ≤ M in Ω and |f (ζ)| ≤ m when
ζ ∈ E ⊂ ∂Ω. Then for any z ∈ Ω

|f (z)| ≤ mωE (z)M1−ωE (z),

where ωE (z) is the harmonic measure of E at point z.
In other words, ωE is the harmonic function with boundary
values 1 on E and 0 on ∂Ω \ E . We once again use the
maximum principle and compare log |f (z)| to
ωE (z) logm + (1− ωE (z)) logM.
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Propagation of smallness for real analytic functions

Suppose that u is a real-analytic function in the unite ball
B ⊂ Rd , u extends to a holomorphic function U in O ⊂ Cd

such that O ∩ Rd ⊃ B and |U| ≤ M in O. Suppose that
E ⊂ 1/2B , |E | > 0 and maxE |u| ≤ m. Then

max
1/2B
|u| ≤ CmβM1−β,

where β depends on O and on |E |.
Theorem (Hayman, 1970)
Suppose that u is a harmonic function in B that satisfies
maxB |u| ≤ M. Then there exists a holomorphic function U in
BC(1/

√
2) such that U(x) = u(x) when x ∈ BR(1/

√
2) and

|U(z)| ≤ C (|z |)M when |z | < 1/
√
2.
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Łojasiewicz inequality
Suppose that f is a non-zero real analytic function in B ⊂ Rn,
Zf = f −1(0),. Then Zf has dimension n − 1, Zf = ∪n−1

j=0Aj ,
where Aj is a countable union of j-dimensional manifolds.

Let Zf ∩ B1 6= ∅. Then for any compact subset K ⊂ B there
exists c > 0 and β such that

|f (x)| ≥ c dist(x ,Zf )β, x ∈ K ,

β is called the Łojasiewicz exponent of f (in K ).

In particular

Eδ = {x ∈ K : |f (x)| < δmax
B
|f |} ⊂ K ∩ (Zf ) + B(0, c1δ

1/β),

where D + B(0, ε) is the ε-neighborhood of a set D.
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Second order elliptic equations

We study operators of the form

Lf = div(A∇f ),

where A(x) = [aij(x)]1≤i ,j≤d is a symmetric matrix with
Lipschitz entries and

Λ−1‖v‖2 ≤ (A(x)v , v) ≤ Λ‖v‖2

uniformly in x .

We will study local properties of solutions to the equation
Lf = 0 and changing the coordinates assume that L is a small
perturbation of the Laplacian.
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Harnack inequality and comparison of norms

Suppose that Lf = 0 in B1 ⊂ Rd and f ≥ 0 in B1 then

max
B1/2

f ≤ CH min
B1/2

f .

In particular Eδ(f ) = {x ∈ B1/2 : |f (x)| < δmaxB1/2 |f |} is
empty when δ is sufficiently small.

We will also use the following inequality (equivalence of
norms) for any solution f of Lf = 0 in B1 we have

1
|S1/2|

∫
S1/2

|f |2 ≤ max
B1/2
|f |2 ≤ C

1
|S1|

∫
S1

|f |2.
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