Remez inequality and propagation of smallness for solutions of second order elliptic PDEs Part I. Classical Remez inequality, analytic propagation of smallness

Eugenia Malinnikova NTNU

March 2018

Chebyshev polynomials

Definition
The n-th Chebyshev polynomial of the fist kind is the polynomial T_{n} of degree n which satisfies the identity

$$
T_{n}(\cos t)=\cos n t
$$

Clearly $T_{1}(x)=x, \quad T_{2}(x)=2 x^{2}-1$ and the trigonometric formula

$$
\cos (n+1) t+\cos (n-1) t=2 \cos n t \cos t
$$

implies the recursive formula for T_{n}

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
$$

Properties

- Leading coefficient: $T_{n}(x)=2^{n-1} x^{n}+\ldots+c_{n}$
- Alternating min-max: We fix n and let $x_{k}=\cos (k \pi / n)$, $k=0, \ldots, n$. Then $T_{n}\left(x_{k}\right)=(-1)^{k}$, $-1=x_{n}<x_{n-1}<\ldots<x_{k}<\ldots<x_{1}<x_{0}=1$.
- Extremal property:

$$
\max _{-1 \leq x \leq 1}\left|T_{n}(x)\right|=1 \leq 2^{n-1} \max _{-1 \leq x \leq 1}\left|P_{n}(x)\right|
$$

for any $P_{n}(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$ (monic polynomial of degree n.)

- Formula $2 T_{n}(x)=\left(x+\sqrt{x^{2}-1}\right)^{n}+\left(x-\sqrt{x^{2}-1}\right)^{n}$

Remez inequality

Theorem (Remez, 1936)
Let E be a measurable subset of an interval I and $|E|=m$. Then for any polynomial P_{n} of degree n

$$
\max _{x \in I}\left|P_{n}(x)\right| \leq T_{n}\left(1+\frac{2(|I|-m)}{m}\right) \max _{x \in E}\left|P_{n}(x)\right|
$$

The equality is attained when $P_{n}(x)=C T_{n}(2 x / m)$, $I=(-m / 2, m / 2+a)$ and $E=(-m / 2, m / 2)$.

Corollary

$$
\max _{x \in I}\left|P_{n}(x)\right| \leq\left(\frac{4|I|}{|E|}\right)^{n} \max _{x \in E}\left|P_{n}(x)\right|
$$

Tool: Lagrange interpolation formula

If P is a polynomial of degree $\leq n$ and y_{0}, \ldots, y_{n} are distinct points then

$$
P(y)=\sum_{j=1}^{n} P\left(y_{j}\right) \prod_{k \neq j} \frac{y-y_{k}}{y_{j}-y_{k}}
$$

Proof of Remez inequality
Renormalize to have $|E|=2, I=[-1,1+a]$. Then find $y_{j} \in E$ such that $\left|y_{j}-y_{k}\right| \geq\left|x_{j}-x_{k}\right|$ (extremal points for Chebyshev polynomial) and $\left|1+a-y_{j}\right| \geq\left|1+a-x_{j}\right|$ and compare interpolation formulas for $P_{n}(1+a)$ and $T_{n}(1+a)$.

Turan-Nazarov inequality for exponential sums

Let $F_{n}(x)=\sum_{k=0}^{n} a_{k} e^{i \lambda_{k} x}$.
Theorem (Nazarov, 1993)
Let E be a measurable subset of an interval I and $|E|=m$.
(i) If all $\lambda_{k} \in \mathbf{R}$ then

$$
\max _{x \in I}\left|F_{n}(x)\right| \leq\left(\frac{C|I|}{|E|}\right)^{n} \max _{x \in E}\left|F_{n}(x)\right|
$$

(ii) If $\lambda_{k} \in \mathrm{C}$ we define $s=\max \left|/ m \lambda_{k}\right|$, then

$$
\max _{x \in I}\left|F_{n}(x)\right| \leq e^{s| | \mid}\left(\frac{C|I|}{|E|}\right)^{n} \max _{x \in E}\left|F_{n}(x)\right|
$$

Reformulation of Remez inequality

The Remez inequality is equivalent to

$$
|E| \leq 4|I|\left(\frac{\max _{x \in E}\left|P_{n}(x)\right|}{\max _{x \in I}\left|P_{n}(x)\right|}\right)^{1 / n} .
$$

We rewrite it as

$$
\left|E_{\delta}\right| \leq 4|/| \delta^{1 / n}
$$

where

$$
E_{\delta}=\left\{x \in I:\left|P_{n}(x)\right|<\delta \max _{x \in I}\left|P_{n}(x)\right|\right\}
$$

Classical results of Cartan and Polya

Let $P_{n}(z)=z^{n}+\ldots$ be a monic polynomial of degree n.
Lemma (Cartan, 1928)
Let $F_{s}=\left\{z \in \mathrm{C}:\left|P_{n}(z)\right| \leq s^{n}\right\}$ and let $\alpha>0$ then there are disks $B_{j}\left(z_{j}, r_{j}\right)$ such that

$$
F_{s} \subset \cup_{j} B_{j}, \quad \sum_{j} r_{j}^{\alpha} \leq e(2 s)^{\alpha}
$$

For $\alpha=2$ one obtains an estimate for the measure of the set $\left|F_{s}\right|$. The sharp result here is due to Polya (1928) and it says that

$$
\left|F_{s}\right| \leq \pi s^{2}
$$

Hadamard three circle theorem

Theorem
Suppose that f is an analytic function in the domain $\left\{r_{0}<|z|<R\right\}$. Let $M(r)=\max _{|z|=r}|f(z)|$ and $r_{0}<r_{1}<r_{2}<r_{3}<R$. Then

$$
M\left(r_{2}\right) \leq M\left(r_{1}\right)^{\alpha} M\left(r_{3}\right)^{1-\alpha}, \quad \text { where } r_{2}=r_{1}^{\alpha} r_{3}^{1-\alpha}
$$

It follows from the maximum principle for (sub)harmonic function $h(z)=\log \left|z^{a} f(z)\right|$. We have

$$
r_{2}^{a} M\left(r_{2}\right) \leq \max \left\{r_{1}^{a} M\left(r_{1}\right), r_{3}^{a} M\left(r_{3}\right)\right\}
$$

and choose a such that $r_{1}^{a} M\left(r_{1}\right)=r_{3}^{a} M\left(r_{3}\right)$, then

$$
r_{2}^{a} M\left(r_{2}\right) \leq\left(r_{1}^{a} M\left(r_{2}\right)\right)^{\alpha}\left(r_{3}^{a} M\left(r_{3}\right)\right)^{1-\alpha}
$$

Two-constant theorem

Theorem
Suppose that f is a bounded analytic function in a Jordan domain Ω such that $|f(z)| \leq M$ in Ω and $|f(\zeta)| \leq m$ when $\zeta \in E \subset \partial \Omega$. Then for any $z \in \Omega$

$$
|f(z)| \leq m^{\omega_{E}(z)} M^{1-\omega_{E}(z)}
$$

where $\omega_{E}(z)$ is the harmonic measure of E at point z.
In other words, ω_{E} is the harmonic function with boundary values 1 on E and 0 on $\partial \Omega \backslash E$. We once again use the maximum principle and compare $\log |f(z)|$ to $\omega_{E}(z) \log m+\left(1-\omega_{E}(z)\right) \log M$.

Propagation of smallness for real analytic functions

Suppose that u is a real-analytic function in the unite ball $B \subset \mathbf{R}^{d}, u$ extends to a holomorphic function U in $O \subset \mathbf{C}^{d}$ such that $O \cap \mathbf{R}^{d} \supset B$ and $|U| \leq M$ in O. Suppose that $E \subset 1 / 2 B,|E|>0$ and $\max _{E}|u| \leq m$. Then

$$
\max _{1 / 2 B}|u| \leq \text { m }^{\beta} M^{1-\beta},
$$

where β depends on O and on $|E|$.
Theorem (Hayman, 1970)
Suppose that u is a harmonic function in B that satisfies $\max _{B}|u| \leq M$. Then there exists a holomorphic function U in $B_{\mathrm{C}}(1 / \sqrt{2})$ such that $U(x)=u(x)$ when $x \in B_{\mathrm{R}}(1 / \sqrt{2})$ and $|U(z)| \leq C(|z|) M$ when $|z|<1 / \sqrt{2}$.

Łojasiewicz inequality

Suppose that f is a non-zero real analytic function in $B \subset \mathbf{R}^{n}$, $Z_{f}=f^{-1}(0)$.. Then Z_{f} has dimension $n-1, Z_{f}=\cup_{j=0}^{n-1} A_{j}$, where A_{j} is a countable union of j-dimensional manifolds.

Let $Z_{f} \cap B_{1} \neq \emptyset$. Then for any compact subset $K \subset B$ there exists $c>0$ and β such that

$$
|f(x)| \geq c \operatorname{dist}\left(x, Z_{f}\right)^{\beta}, \quad x \in K,
$$

β is called the Łojasiewicz exponent of f (in K).
In particular

$$
E_{\delta}=\left\{x \in K:|f(x)|<\delta \max _{B}|f|\right\} \subset K \cap\left(Z_{f}\right)+B\left(0, c_{1} \delta^{1 / \beta}\right),
$$

where $D+B(0, \epsilon)$ is the ϵ-neighborhood of a set D.

> E. Malinnikova Propagation of smallness for elliptic PDEs

Second order elliptic equations

We study operators of the form

$$
L f=\operatorname{div}(A \nabla f),
$$

where $A(x)=\left[a_{i j}(x)\right]_{1 \leq i, j \leq d}$ is a symmetric matrix with Lipschitz entries and

$$
\Lambda^{-1}\|v\|^{2} \leq(A(x) v, v) \leq \Lambda\|v\|^{2}
$$

uniformly in x.
We will study local properties of solutions to the equation $L f=0$ and changing the coordinates assume that L is a small perturbation of the Laplacian.

Harnack inequality and comparison of norms

Suppose that $L f=0$ in $B_{1} \subset \mathbf{R}^{d}$ and $f \geq 0$ in B_{1} then

$$
\max _{B_{1 / 2}} f \leq C_{H} \min _{B_{1 / 2}} f .
$$

In particular $E_{\delta}(f)=\left\{x \in B_{1 / 2}:|f(x)|<\delta \max _{B_{1 / 2}}|f|\right\}$ is empty when δ is sufficiently small.

We will also use the following inequality (equivalence of norms) for any solution f of $L f=0$ in B_{1} we have

$$
\frac{1}{\left|S_{1 / 2}\right|} \int_{S_{1 / 2}}|f|^{2} \leq \max _{B_{1 / 2}}|f|^{2} \leq C \frac{1}{\left|S_{1}\right|} \int_{S_{1}}|f|^{2} .
$$

