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Second order elliptic equations

We study operators of the form

Lf = div(A∇f ),

where A(x) = [aij(x)]1≤i ,j≤d is a symmetric matrix with
Lipschitz entries and

Λ−1‖v‖2 ≤ (A(x)v , v) ≤ Λ‖v‖2

uniformly in x .

We will study local properties of solutions to the equation
Lf = 0 and changing the coordinates assume that L is a small
perturbation of the Laplacian.
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Harnack inequality and comparison of norms

Suppose that Lf = 0 in B1 ⊂ Rd and f ≥ 0 in B1 then

max
B1/2

f ≤ CH min
B1/2

f .

In particular Eδ(f ) = {x ∈ B1/2 : |f (x)| < δmaxB1/2 |f |} is
empty when δ is sufficiently small.

We will also use the following inequality (equivalence of
norms) for any solution f of Lf = 0 in B1 we have

1
|S1/2|

ˆ
S1/2

|f |2 ≤ max
B1/2
|f |2 ≤ C

1
|S1|

ˆ
S1

|f |2.
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Unique continuation property

Definition
A differential operator P is said to have the strong unique
continuation property (SUCP) in Ω ⊂ Rn if for any x ∈ Ω and
any u such that Pu = 0 and u vanishes at x of infinite order,
u = 0 in a neighborhood of x .

Definition
A differential operator P is said to have the weak unique
continuation property (WUCP) in a connected open set
Ω ⊂ Rn if Pu = 0 in Ω and u vanishes at some open subset of
Ω implies u = 0 in Ω.
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Logarithmic convexity: harmonic functions
Let h be a harmonic function in BR1 ⊂ Rd and let
0 < R0 < R < R1, denote

m(r) =

(
1
|Br |

ˆ
Br

|h|2
)1/2

Then m(R) ≤ m(R0)αm(R1)1−α, where R = Rα
0 R

1−α
1 .

In other words the function F (t) = logm(et) is convex.
Exercises: m(r) =

∑
c2
k r

2k and sum of positive log-convex
functions is log-convex.

Corollary:
sup
BR

|h| ≤ C sup
BR0

|h|β sup
BR1

|h|1−β.
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Almgren’s frequency function

Let div(A∇f ) = 0 in B ⊂ Rd . Define H(r) =
ffl
∂Br
|f |2.

Then H ′(r) = 2
ffl
∂Br

ffn.

Almgren’s frequency function

Nf (x , r) =
rH ′(r)

H(r)
=

r
ffl
∂Br

ffnffl
∂Br
|f |2

• If f is a homogeneous polynomial of degree N then
Nf (0, r) = N.

• If f vanishes at x with its derivatives up to order N, then
limr→0Nf (x , r) = N
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Logarithmic convexity of the norms of elliptic PDE

Theorem (Garofalo-Lin, 1986)
There exist c and r0 such that ecrNf (x , r) is increasing
function of r on (0, r0).
The doubling index of a function is closely connected to its
frequency. We define it by

N2,f (x , r) = log

ffl
∂B(x ,2r)

|f |2ffl
∂B(x ,r)

|f |2

Then

N2,f (x , r) =

ˆ 2r

r

tH ′f (x , t)

Hf (x , t)

dt
t

= cNf (x , r0)

for some r0 ∈ (r , 2r).
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Three balls theorem and modified doubling index
The monotonicity theorem and equivalence of norms implies
three balls inequality for solutions of elliptic PDEs (Landis
1963):

max
Br2

|f | ≤ C max
Br1

|f |β max
Br3

|f |1−β,

where 0 < r1 < r2 < r3 < R and Lf = 0 in BR .

We will use modified doubling index defined by
supremum-norms:

Nf (x , r) = log
maxB(x ,2r |f |
maxB(x ,r) |f |

, Ñf (x , r) = sup
2b⊂B(x ,2r)

max2b |f |
maxb |f |

This function is monotone in r and if Ñf (x , r) > N0 then
Nf (x , 2r) > (1− ε)Ñf (x , r).
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Cauchy uniqueness theorem

Theorem
Suppose that Ω is a domain with good boundary, f ∈ C 1(Ω̄)
and Lf = 0 in Ω. Let Γ = B ∩ ∂Ω be a non-empty part of the
boundary. If f |Γ = 0 and fn|Γ = 0 then f ≡ 0.

There is also a quantitative version of Cauchy uniqueness

Theorem
Suppose that Lf = 0 in the unit cube and f ∈ C 1(Q̄). If
|∇f | ≤ ε on one face of the cube and |∇f | ≤ 1 in Q, then

max
1/2Q
|∇f | ≤ Cεγ.
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Two lemmas of A.Logunov

The two quantitative results on propagation of smallness can
be formulated in terms of the frequency function. Let LF = 0
in the ball BR , R >> 1

Lemma (Simplex lemma, Logunov, 2016)
Suppose that {xj} ⊂ B1 are the vertices of a non-degenerate
simplex, r < minj 6=k |xj − xk | and d > max |xj − xk |. Let
further x0 be the barycenter of the simplex. There exists c > 0
and N0 such that if N(xj , r) > N ≥ N0 then
N(x0, 2d) > (1 + c)N.

Lemma (Hyperplane lemma, Logunov, 2016)
Suppose that {xj}A

d−1

j=1 are points ion the B1 ∩ {xd = 0} that
form a lattice on the hyperplane and N(xj , r) > N for each j
then N(0, 1) > (1 + c)N.
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Distribution of the frequency function

Combining two lemmas above and using simple iteration
procedure one can obtain the following statement of the
distribution of cubes with large doubling index:

Corollary
Let Lf = 0 in CQ and N = Nf (Q), there exists A such that
when Q is partitioned into Ad small cubes q the number of
cubes with Nf (q) > N/(1 + ε) is bounded by Ad−1−c .
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Quantitative unique continuation

Let Lf = 0 in Ω, |f | ≤ ε on E ⊂ Ω, K is a compact subset of
Ω then

max
K
|f | ≤ C sup

Ω
|f |1−αεα.

E =Ball, three balls theorems

|E | > 0, analytic coefficients, Nadirashvili 1979

dim(E ) > n − 1, analytic coefficients, E.M. 2004 (capacity)

|E | > 0, non-analytic case, Nadirashvili 86, Vessella 2000,
E.M. and Vessella 2012:

maxK |h| ≤ C exp(−c | log ε|)µ) supΩ |f |, µ = µ(n) < 1.
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A new result on quantitative uniqueness, non-analytic
coefficients

Theorem (E.M., A. Logunov, 2017)
Let f be a solution of Lf = 0. Assume that

|f | ≤ ε on E ⊂ Ω,

where |E | > 0. Let K be a compact subset of Ω then

max
K
|f | ≤ C sup

Ω
|f |1−αεα,

where C , α depend on L, |E |, dist(E , ∂Ω) and K (but not on
E and f ).
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Discrete Laplace operator

Discrete Laplace operator on (hZ )n

∆hU(x) = h−2(
n∑

j=1

(U(x + hej) + u(x − hej)− 2nU(x)).

No (naive) unique continuation property.

Logarithmic convexity in Cauchy problem with some boundary
data: Falk and Monk 1986, Reinhardt, Han and Háo 1999

Discrete Carleman estimates:
Klibanov and Santosa 1991, Boyer, Hubert and Le Rousseau
2009, Ervedoza and de Gournay 2011.
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Logarithmic convexity for discrete harmonic functions

Theorem (M. Guadie, E.M, 2014)
Let Ω be a connected domain in Rn, O be an open subset of
Ω, and K ⊂ Ω be a compact set. Then there exists C , α and
δ < 1 and N0 large enough such that for any N ∈ Z,N > N0
and any discrete harmonic function U on Ω∩ (N−1Z)n we have

max
K
|U| ≤ C (max

O
|U|αmax

Ω
|U|1−α + δN max

Ω
|U|).

It is clear that on the right-hand side we should have at least
δN
0 maxΩ |U|. There is no (weak) unique continuation principle
for discrete harmonic functions.
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An improvement

Theorem (L. Buhovsky, A. Logunov, E.M., M.Sodin, 2017)
Let QN = [−N,N]d , if U is discrete harmonic in QN ,
|U| ≤ 1 on QN and |U| ≤ ε on some (fixed) portion of QN/4
then

max
QN/2
|U| ≤ Cεα + δN .

Tool (Discrete version of the Remez inequality)
P is a polynomial of degree n , P ∈ R[x ] and
S ⊂ I ∩ Z = [a, b], |#S | > 2n

sup
I
|P | ≤

(
8|I |
|#S |

)n

sup
E
|P |
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