Remez inequality and propagation of smallness for solutions of second order elliptic PDEs **Part III. Eigenfunctions of Laplace-Beltrami operator**

> Eugenia Malinnikova NTNU

> > March 2018

E. Malinnikova Propagation of smallness for elliptic PDEs

イロト 不得下 イヨト イヨト 三日

Sar

Eigenfunctions

Consider a bounded domain in \mathbb{R}^n with Dirichlet boundary conditions or a compact closed manifold. We study the eigenfunctions of the Laplace operator

$$\Delta_M u + \lambda u = 0.$$

Here Δ_M is a uniformly elliptic operator, u is a solution of a second order equation with zero order term.

E. Malinnikova Propagation of smallness for elliptic PDEs

イロト 不得下 イヨト イヨト 三日

Wave-scale

Consider an eigenfunction u

$$\Delta_M u + \lambda u = 0,$$

look at the scale $s = c\lambda^{-1/2}$ and do the change of variables $g(x) = u(x_0 + sx)$, then g satisfies an equation

$$Lg + cg = 0$$

with bounded (small) coefficient c and we believe that on this scale g shares properties of the solutions of elliptic equations in divergence form.

Harmonic extension (lifting)

A better way to work on the wave-scale is to introduce a new variable and consider the function

$$h(x,t) = u(x)e^{\sqrt{\lambda}t}$$

Then

$$\Delta h = 0$$

where Δ is the Laplace-Beltrami operator on $M \times \mathbf{R}$. We have a second order elliptic operator in divergence form and λ is hidden in the behavior of h in the extra direction.

Similar procedure: from spherical harmonics to harmonic functions in \mathbf{R}^d .

Application: the density of zeros

Suppose that u is an eigenfunction

$$\Delta_M u + \lambda u = 0$$

and it is positive on some ball B_r . Then h is positive in the cylinder $B_r \times [-r, r]$. By the Harnack inequality the maximum and minimum of h in the smaller cylinder $C_r = B_{r/2} \times [-r/2, r/2]$ are comparable. But

$$\frac{\max_{C_r} h}{\min_{C_r} h} \ge e^{r\sqrt{\lambda}}.$$

It means that $r \leq C_0 \lambda^{-1/2}$. Thus Z_u intersects each ball of radius $c \lambda^{-1/2}$.

E. Malinnikova Propagation of smallness for elliptic PDEs

Doubling index of eigenfunctions

Theorem (Donnelly-Fefferman, 1988) Let u be an eigenfunction with eigenvalue λ , then for any cube Q

$$N(u,Q) \leq C\sqrt{\lambda}$$

Idea of the proof Consider h(x, t) then $N(u, B) \leq N(h, B_1)$, where B_1 is a ball containing B. Then we use the almost monotonicity of the doubling index for solutions of elliptic equations and note that if the size B_0 is comparable to M then $N(h, B_0) \leq C\sqrt{\lambda}$.

Doubling index of eigenfunctions

Theorem (Donnelly-Fefferman, 1988) Let u be an eigenfunction with eigenvalue λ , then for any cube Q

$$N(u,Q) \leq C\sqrt{\lambda}$$

Idea of the proof Consider h(x, t) then $N(u, B) \leq N(h, B_1)$, where B_1 is a ball containing B. Then we use the almost monotonicity of the doubling index for solutions of elliptic equations and note that if the size B_0 is comparable to M then $N(h, B_0) \leq C\sqrt{\lambda}$.

Accurate proof through propagation of smallness.

イロト 不得下 イヨト イヨト 三日

Doubling index of eigenfunctions

Theorem (Donnelly-Fefferman, 1988) Let u be an eigenfunction with eigenvalue λ , then for any cube Q

$$N(u,Q) \leq C\sqrt{\lambda}$$

Idea of the proof Consider h(x, t) then $N(u, B) \leq N(h, B_1)$, where B_1 is a ball containing B. Then we use the almost monotonicity of the doubling index for solutions of elliptic equations and note that if the size B_0 is comparable to M then $N(h, B_0) \leq C\sqrt{\lambda}$.

Accurate proof through propagation of smallness.

In particular the order of vanishing of u is bounded by $c\sqrt{\lambda}$.

Let u be an eigenfunction, $\Delta_M u + \lambda u = 0$, and Z_u be its zero set. Yau conjectured that

$$c\sqrt{\lambda} \leq H^{d-1}(Z_u) \leq C\sqrt{\lambda}$$

E. Malinnikova Propagation of smallness for elliptic PDEs

na Cr

Let u be an eigenfunction, $\Delta_M u + \lambda u = 0$, and Z_u be its zero set. Yau conjectured that

$$c\sqrt{\lambda} \leq H^{d-1}(Z_u) \leq C\sqrt{\lambda}$$

• Donnelli and Fefferman in 1988 proved that the conjecture holds when the metric is real analytic

E. Malinnikova Propagation of smallness for elliptic PDEs

Sar

Let u be an eigenfunction, $\Delta_M u + \lambda u = 0$, and Z_u be its zero set. Yau conjectured that

$$c\sqrt{\lambda} \leq H^{d-1}(Z_u) \leq C\sqrt{\lambda}$$

- Donnelli and Fefferman in 1988 proved that the conjecture holds when the metric is real analytic
- An estimate from above in the smooth case followed from Hardt& Simon's (1989) proof of the dimension estimate of the zero set, they obtained $H^{d-1}(Z_u) \leq C\lambda^{\sqrt{\lambda}}$.

Let u be an eigenfunction, $\Delta_M u + \lambda u = 0$, and Z_u be its zero set. Yau conjectured that

$$c\sqrt{\lambda} \leq H^{d-1}(Z_u) \leq C\sqrt{\lambda}$$

- Donnelli and Fefferman in 1988 proved that the conjecture holds when the metric is real analytic
- An estimate from above in the smooth case followed from Hardt& Simon's (1989) proof of the dimension estimate of the zero set, they obtained $H^{d-1}(Z_u) \leq C\lambda^{\sqrt{\lambda}}$.
- For smooth metric the best old estimate from below was $H^{d-1}(Z_u) \ge \lambda^{(3-n)/4}$ (Sogge & Zeldich, Colding & Minicozzi, 2011-12)

Let u be an eigenfunction, $\Delta_M u + \lambda u = 0$, and Z_u be its zero set. Yau conjectured that

$$c\sqrt{\lambda} \leq H^{d-1}(Z_u) \leq C\sqrt{\lambda}$$

- Donnelli and Fefferman in 1988 proved that the conjecture holds when the metric is real analytic
- An estimate from above in the smooth case followed from Hardt& Simon's (1989) proof of the dimension estimate of the zero set, they obtained $H^{d-1}(Z_u) \leq C\lambda^{\sqrt{\lambda}}$.
- For smooth metric the best old estimate from below was $H^{d-1}(Z_u) \ge \lambda^{(3-n)/4}$ (Sogge & Zeldich, Colding & Minicozzi, 2011-12)
- For n = 2 the estimate from below in due to Büning 1978; the best estimate from above is due to Donnelly and Feffreman 1990 $H^1(Z_u) \leq C\lambda^{3/4}$

E. Malinnikova

Propagation of smallness for elliptic PDEs

Some ideas of Donnelly and Fefferman for real analytic case

For the estimate from below, partition *M* into cubes with side of the wave length. On each of this cubes N_u(q) ≤ C√λ.
 Claim: At least half of the cubes satisfy N_u(q) ≤ C (analytic technique, log |u|)

Some ideas of Donnelly and Fefferman for real analytic case

- For the estimate from below, partition *M* into cubes with side of the wave length. On each of this cubes N_u(q) ≤ C√λ.
 Claim: At least half of the cubes satisfy N_u(q) ≤ C (analytic technique, log |u|)
- Estimate from above: take harmonic extension. Claim: if h is a harmonic function (in real analytic metric) with $N_h(q) \leq N$ one has $H^d(Z_h) \leq CN$. (intersections with lines and estimates for analytic functions).

New results

- n = 2 the estimate $\lambda^{3/4}$ is not sharp, it can be improved.
- (Logunov 2016) there is a polynomial estimate from above in any dimension H^{d-1}(Z_u) ≤ Cλ^K for some K = K(d, M).
- (Logunov 2016) the conjectured estimate from below holds in any dimension H^{d-1}(Z_u) ≥ c√λ.
- for the Dirichlet Laplacian on a subdomain of R^d with smooth boundary the Yau conjecture holds.

A question of Nadirashvili

Question

Is it true that there exists a constant K_d such that for any harmonic function h in $B_1 \subset \mathbb{R}^d$ such that h(0) = 0 the inequality $H^{d-1}(Z_h) \geq K_d$ holds?

This is trivial in dimension two (maximum principle). There is no "analytic" answer in higher dimensions.

Theorem (Logunov, 2016)

The answer is yes for solutions of elliptic equations in divergence form.

This implies the estimate from below in the Yau's conjecture. Zeros are $c\lambda^{-1/2}$ -dense. In each cube on the wave scale the measure of the zero set is at least $K_d\lambda^{-d-1/2}$ and we have $\lambda^{d/2}$ cubes.

E. Malinnikova Propagation of smallness for elliptic PDEs

Not all doubling indices are large

Suppose that u is a function om a compact manifold, $N_{2,u}(q)$ is the doubling index for the L^2 -norm. We partition M into cubes on approximately the same size. Then there are cubes with small doubling index. One may estimate the number of such cubes from the estimates on $||u||_{\infty}/||u||_2$.

Now let Lf = 0 in CQ, consider the doubling index \tilde{N}_f and a partition of Q into A^d small cubes. Then if $\tilde{N}(q) > N_0$ for each small cube q then $\tilde{N}(Q) > AN_0/2$

Iterating this result we obtain: If $\tilde{N}(Q) > N_0$ and Q is divided into B^d small cubes then for at least half of them $\tilde{N}(q) \leq B^{-\delta} \tilde{N}(Q)$.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 _ りへで