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Eigenfunctions

Consider a bounded domain in Rn with Dirichlet boundary
conditions or a compact closed manifold. We study the
eigenfunctions of the Laplace operator

∆Mu + λu = 0.

Here ∆M is a uniformly elliptic operator, u is a solution of a
second order equation with zero order term.
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Wave-scale

Consider an eigenfunction u

∆Mu + λu = 0,

look at the scale s = cλ−1/2 and do the change of variables
g(x) = u(x0 + sx), then g satisfies an equation

Lg + cg = 0

with bounded (small) coefficient c and we believe that on this
scale g shares properties of the solutions of elliptic equations
in divergence form.
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Harmonic extension (lifting)

A better way to work on the wave-scale is to introduce a new
variable and consider the function

h(x , t) = u(x)e
√
λt .

Then
∆h = 0

where ∆ is the Laplace-Beltrami operator on M ×R. We have
a second order elliptic operator in divergence form and λ is
hidden in the behavior of h in the extra direction.

Similar procedure: from spherical harmonics to harmonic
functions in Rd .
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Application: the density of zeros

Suppose that u is an eigenfunction

∆Mu + λu = 0

and it is positive on some ball Br . Then h is positive in the
cylinder Br × [−r , r ]. By the Harnack inequality the maximum
and minimum of h in the smaller cylinder
Cr = Br/2 × [−r/2, r/2] are comparable. But

maxCr h
minCr h

≥ er
√
λ.

It means that r ≤ C0λ
−1/2. Thus Zu intersects each ball of

radius cλ−1/2.
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Doubling index of eigenfunctions

Theorem (Donnelly-Fefferman, 1988)
Let u be an eigenfunction with eigenvalue λ, then for any cube
Q

N(u,Q) ≤ C
√
λ

Idea of the proof Consider h(x , t) then N(u,B) ≤ N(h,B1),
where B1 is a ball containing B . Then we use the almost
monotonicity of the doubling index for solutions of elliptic
equations and note that if the size B0 is comparable to M then
N(h,B0) ≤ C

√
λ.

Accurate proof through propagation of smallness.

In particular the order of vanishing of u is bounded by c
√
λ.
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Yau’s conjecture
Let u be an eigenfunction, ∆Mu + λu = 0, and Zu be its zero
set. Yau conjectured that

c
√
λ ≤ Hd−1(Zu) ≤ C

√
λ

• Donnelli and Fefferman in 1988 proved that the
conjecture holds when the metric is real analytic

• An estimate from above in the smooth case followed from
Hardt& Simon’s (1989) proof of the dimension estimate
of the zero set, they obtained Hd−1(Zu) ≤ Cλ

√
λ.

• For smooth metric the best old estimate from below was
Hd−1(Zu) ≥ λ(3−n)/4 (Sogge & Zeldich, Colding &
Minicozzi, 2011-12)

• For n = 2 the estimate from below in due to Büning
1978; the best estimate from above is due to Donnelly
and Feffreman 1990 H1(Zu) ≤ Cλ3/4
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Some ideas of Donnelly and Fefferman for real analytic case

• For the estimate from below, partition M into cubes with
side of the wave length. On each of this cubes
Nu(q) ≤ C

√
λ.

Claim: At least half of the cubes satisfy Nu(q) ≤ C
(analytic technique, log |u|)

• Estimate from above: take harmonic extension.
Claim: if h is a harmonic function (in real analytic metric)
with Nh(q) ≤ N one has Hd(Zh) ≤ CN. (intersections
with lines and estimates for analytic functions).
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New results

• n = 2 the estimate λ3/4 is not sharp, it can be improved.
• (Logunov 2016) there is a polynomial estimate from
above in any dimension Hd−1(Zu) ≤ CλK for some
K = K (d ,M).

• (Logunov 2016) the conjectured estimate from below
holds in any dimension Hd−1(Zu) ≥ c

√
λ.

• for the Dirichlet Laplacian on a subdomain of Rd with
smooth boundary the Yau conjecture holds.
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A question of Nadirashvili
Question
Is it true that there exists a constant Kd such that for any
harmonic function h in B1 ⊂ Rd such that h(0) = 0 the
inequality Hd−1(Zh) ≥ Kd holds?
This is trivial in dimension two (maximum principle).
There is no "analytic" answer in higher dimensions.
♦
Theorem (Logunov, 2016)
The answer is yes for solutions of elliptic equations in
divergence form.
♦
This implies the estimate from below in the Yau’s conjecture.
Zeros are cλ−1/2-dense. In each cube on the wave scale the
measure of the zero set is at least Kdλ

−d−1/2 and we have
λd/2 cubes.
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Not all doubling indices are large

Suppose that u is a function om a compact manifold, N2,u(q)
is the doubling index for the L2-norm. We partition M into
cubes on approximately the same size. Then there are cubes
with small doubling index. One may estimate the number of
such cubes from the estimates on ‖u‖∞/‖u‖2.

Now let Lf = 0 in CQ, consider the doubling index Ñf and a
partition of Q into Ad small cubes. Then if Ñ(q) > N0 for
each small cube q then Ñ(Q) > AN0/2

Iterating this result we obtain: If Ñ(Q) > N0 and Q is divided
into Bd small cubes then for at least half of them
Ñ(q) ≤ B−δÑ(Q).
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