Remez inequality and propagation of smallness for solutions of second order elliptic PDEs Part IV. Smallness propagation from sets of positive measure

> Eugenia Malinnikova NTNU

> > March 2018

E. Malinnikova Propagation of smallness for elliptic PDEs

イロト 不得下 イヨト イヨト 二日

San

Not all doubling indices are large

Suppose that u is a function om a compact manifold, $N_{2,u}(q)$ is the doubling index for the L^2 -norm. We partition M into cubes on approximately the same size. Then there are cubes with small doubling index. One may estimate the number of such cubes from the estimates on $||u||_{\infty}/||u||_{2}$.

Now let Lf = 0 in CQ, consider the doubling index \tilde{N}_f and a partition of Q into A^d small cubes. Then if $\tilde{N}(q) > N_0$ for each small cube q then $\tilde{N}(Q) > AN_0/2$

Iterating this result we obtain: If $\tilde{N}(Q) > N_0$ and Q is divided into B^d small cubes then the number of cube where $\tilde{N}(q) \geq \tilde{N}(Q)/2$ is $\leq B^{d-\gamma}$.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 _ りへで

A new result on quantitative uniqueness, non-analytic coefficients

Theorem (E.M., A. Logunov, 2017) Let f be a solution of Lf = 0. Assume that

 $|f| \leq \epsilon$ on $E \subset \Omega$,

where |E| > 0. Let K be a compact subset of Ω then

$$\max_{\mathcal{K}} |f| \leq C \sup_{\Omega} |f|^{1-\alpha} \epsilon^{\alpha},$$

where C, α depend on $L, |E|, \operatorname{dist}(E, \partial \Omega)$ and K (but not on E and f).

Remez inequality for solutions

Let Q be a unit cube. Assume f is a solution to $\operatorname{div}(A\nabla f) = 0$ in C_d and define the doubling index $N = \log \frac{\sup_{2Q} |u|}{\sup_{Q} |u|}$. Then

$$\sup_{Q} |u| \le C \sup_{E} |u| \left(C \frac{|Q|}{|E|} \right)^{CN}$$

where C depends on A only, E is any subset of Q of a positive measure.

Reformulation

The Remez inequality is equivalent to the following estimate of the sub-level set.

Lemma

Suppose that $\operatorname{div}(A\nabla u) = 0$ in $C_d Q$ and $\sup_Q |u| = 1$. Let $N = N(u, Q) \ge 1$. Set

$$E_a = \{x \in Q : |u(x)| < e^{-a}\}.$$

Then

$$|(E_a)| < Ce^{-\beta a/N}|s(Q)|^d,$$

for some $C, \beta > 0$.

This lemma implies the propagation of smallness result.

E. Malinnikova Propagation of smallness for elliptic PDEs

We will prove the estimate

$$|(E_a)| < C e^{-\beta a/N} |s(Q)|^d$$

using double induction in (a, N).

We will prove the estimate

$$|(E_a)| < C e^{-\beta a/N} |s(Q)|^d$$

using double induction in (a, N).

• Induction base 1: *a* < *N* the inequality trivially holds for *C* large enough.

We will prove the estimate

$$|(E_a)| < C e^{-\beta a/N} |s(Q)|^d$$

using double induction in (a, N).

- Induction base 1: *a* < *N* the inequality trivially holds for *C* large enough.
- Induction base 2: $N < N_0$ and all *a*, we will prove it next.

We will prove the estimate

$$|(E_a)| < C e^{-\beta a/N} |s(Q)|^d$$

using double induction in (a, N).

- Induction base 1: *a* < *N* the inequality trivially holds for *C* large enough.
- Induction base 2: $N < N_0$ and all *a*, we will prove it next.
- Induction step: from N/2 and all a to N and all a using induction on a and base 1.

Sar

Induction base 2: estimate of the zero set

The set E_a is concentrated near the zero set. The following estimates for the size of the zero set are used:

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Induction base 2: estimate of the zero set

The set E_a is concentrated near the zero set. The following estimates for the size of the zero set are used:

For any N > 0 there exist c_N and C_N such that for any solution of Lf = 0 satisfying $N(u, Q) \le N$ we have

$$H^{d-1}(\{f=0\}\cap Q) \leq C_N s(Q)^{d-1}$$

Induction base 2: estimate of the zero set

The set E_a is concentrated near the zero set. The following estimates for the size of the zero set are used:

For any N > 0 there exist c_N and C_N such that for any solution of Lf = 0 satisfying $N(u, Q) \le N$ we have

$$H^{d-1}(\{f=0\}\cap Q)\leq C_Ns(Q)^{d-1}$$

and if $\{f = 0\} \cap 1/2Q \neq \emptyset$ then

$$H^{d-1}(\{f=0\}\cap Q)\geq c_N s(Q)^{d-1}.$$

E. Malinnikova Propagation of smallness for elliptic PDEs

Induction base 2

Partition Q into small cubes q with side-length $Ce^{-a/N}s(Q)$. We count how many of cubes 2q intersect the zero set Z_f . Denote this number by L.

Sar

Induction base 2

Partition Q into small cubes q with side-length $Ce^{-a/N}s(Q)$. We count how many of cubes 2q intersect the zero set Z_f . Denote this number by L.

For any q we have that $\sup_{2q} |f| \ge Ce^{-a} \sup_Q |f|$ from the estimate on the doubling index. If f is positive in 2q then by the Harnack inequality q does not intersect E_a .

Induction base 2

Partition Q into small cubes q with side-length $Ce^{-a/N}s(Q)$. We count how many of cubes 2q intersect the zero set Z_f . Denote this number by L.

For any q we have that $\sup_{2q} |f| \ge Ce^{-a} \sup_Q |f|$ from the estimate on the doubling index. If f is positive in 2q then by the Harnack inequality q does not intersect E_a .

Then

$$|E_a| \leq Ls(q)^d$$

E. Malinnikova Propagation of smallness for elliptic PDEs

Number of cubes intersecting the zero set

It remains to estimate L,

$$C_N s(Q)^{d-1} \geq H^{d-1}(Z_f \cap Q) = \sum_{j=1}^L H^{d-1}(Z_f \cap q_j) \geq Lc_N s(q)^{d-1}$$

(日) (四) (王) (王) (王)

Number of cubes intersecting the zero set

It remains to estimate L,

$$C_N s(Q)^{d-1} \geq H^{d-1}(Z_f \cap Q) = \sum_{j=1}^L H^{d-1}(Z_f \cap q_j) \geq Lc_N s(q)^{d-1}$$

We have also $s(q) = Ce^{-a/N}s(Q)$ and then

$$Ls(q)^d \leq C_N(c_N)^{-1}s(q)s(Q)^{d-1} = b_N e^{-a/N}s(Q)^d.$$

Combining with the previous estimate we get the statement of induction base 2.

E. Malinnikova Propagation of smallness for elliptic PDEs

Choosing the right notation

By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental power of the race.

Alfred North Whitehead, "'An Introduction to Mathematics"'

Induction step

Let Q_0 be the unit cube in \mathbf{R}^d and let

$$m(f, a) = |\{x \in Q_0 : |u(x)| < e^{-a} \sup_{Q_0} |f|\}|,$$

and

$$M(N,a) = \sup_{*} m(f,a),$$

where the supremum is taken over all elliptic operators $\operatorname{div}(A\nabla \cdot)$ and functions f satisfying the following conditions in $C_d Q_0$:

(i) $A(x) = [a_{ij}(x)]_{1 \le i,j \le n}$ is a symmetric uniformly elliptic matrix with Lipschitz entries.

(ii)
$$f$$
 is a solution to $\operatorname{div}(A\nabla f) = 0$ in $C_d Q_0$,
(iii) $N(f, Q_0) \leq N$.

E. Malinnikova Propagation

Propagation of smallness for elliptic PDEs

We want to show by induction that $M(N, a) \leq Ce^{-\beta a/N}$.

E. Malinnikova Propagation of smallness for elliptic PDEs

We want to show by induction that $M(N, a) \leq Ce^{-\beta a/N}$. We divide Q into B^d small cubes q and deduce a recursive inequality for M(N, a).

 $M(N,a) \leq B^{d}(M(N/2,a_{1})B^{-d}) + B^{d-\gamma}(M(N,a_{1})B^{-d})$

Sar

We want to show by induction that $M(N, a) \leq Ce^{-\beta a/N}$. We divide Q into B^d small cubes q and deduce a recursive inequality for M(N, a).

$$M(N,a) \leq B^{d}(M(N/2,a_{1})B^{-d}) + B^{d-\gamma}(M(N,a_{1})B^{-d})$$

Here $a_1 = a - cN \log B$ it appears since $\sup_{Q_0} |f|$ and $\sup_q |f|$ differs, but we have $\sup_q |f| \ge B^{-cN} \sup_Q |f|$.

We want to show by induction that $M(N, a) \leq Ce^{-\beta a/N}$. We divide Q into B^d small cubes q and deduce a recursive inequality for M(N, a).

$$M(N,a) \leq B^{d}(M(N/2,a_{1})B^{-d}) + B^{d-\gamma}(M(N,a_{1})B^{-d})$$

Here $a_1 = a - cN \log B$ it appears since $\sup_{Q_0} |f|$ and $\sup_q |f|$ differs, but we have $\sup_q |f| \ge B^{-cN} \sup_Q |f|$.

$$M(N,a) \leq M(N/2, a - cN \log B) + B^{-\gamma}M(N, a - cN \log B)$$

We want to show by induction that $M(N, a) \leq Ce^{-\beta a/N}$. We divide Q into B^d small cubes q and deduce a recursive inequality for M(N, a).

$$M(N,a) \leq B^{d}(M(N/2,a_{1})B^{-d}) + B^{d-\gamma}(M(N,a_{1})B^{-d})$$

Here $a_1 = a - cN \log B$ it appears since $\sup_{Q_0} |f|$ and $\sup_q |f|$ differs, but we have $\sup_q |f| \ge B^{-cN} \sup_Q |f|$.

 $M(N,a) \leq M(N/2, a - cN \log B) + B^{-\gamma}M(N, a - cN \log B)$

$$\leq \mathit{Ce}^{-eta \mathsf{a}/N}\left(\mathit{e}^{-eta \mathsf{a}/N}B^{\mathsf{c}eta}+B^{-\gamma}B^{\mathsf{c}eta}
ight)$$

E. Malinnikova Propagation of smallness for elliptic PDEs

· ロト (得) (臣) (臣) (臣)