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Not all doubling indices are large

Suppose that u is a function om a compact manifold, N2,u(q)
is the doubling index for the L2-norm. We partition M into
cubes on approximately the same size. Then there are cubes
with small doubling index. One may estimate the number of
such cubes from the estimates on ‖u‖∞/‖u‖2.

Now let Lf = 0 in CQ, consider the doubling index Ñf and a
partition of Q into Ad small cubes. Then if Ñ(q) > N0 for
each small cube q then Ñ(Q) > AN0/2

Iterating this result we obtain: If Ñ(Q) > N0 and Q is divided
into Bd small cubes then the number of cube where
Ñ(q) ≥ Ñ(Q)/2 is ≤ Bd−γ.
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A new result on quantitative uniqueness, non-analytic
coefficients

Theorem (E.M., A. Logunov, 2017)
Let f be a solution of Lf = 0. Assume that

|f | ≤ ε on E ⊂ Ω,

where |E | > 0. Let K be a compact subset of Ω then

max
K
|f | ≤ C sup

Ω
|f |1−αεα,

where C , α depend on L, |E |, dist(E , ∂Ω) and K (but not on
E and f ).
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Remez inequality for solutions

Let Q be a unit cube. Assume f is a solution to div(A∇f ) = 0
in Cd and define the doubling index N = log sup2Q |u|

supQ |u|
. Then

sup
Q
|u| ≤ C sup

E
|u|
(
C
|Q|
|E |

)CN

where C depends on A only, E is any subset of Q of a positive
measure.
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Reformulation

The Remez inequality is equivalent to the following estimate of
the sub-level set.

Lemma
Suppose that div(A∇u) = 0 in CdQ and supQ |u| = 1. Let
N = N(u,Q) ≥ 1. Set

Ea = {x ∈ Q : |u(x)| < e−a}.

Then
|(Ea)| < Ce−βa/N |s(Q)|d ,

for some C , β > 0.
This lemma implies the propagation of smallness result.
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Induction

We will prove the estimate

|(Ea)| < Ce−βa/N |s(Q)|d

using double induction in (a,N).

• Induction base 1: a < N the inequality trivially holds for
C large enough.

• Induction base 2: N < N0 and all a, we will prove it next.
• Induction step: from N/2 and all a to N and all a using
induction on a and base 1.
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Induction base 2: estimate of the zero set

The set Ea is concentrated near the zero set. The following
estimates for the size of the zero set are used:

For any N > 0 there exist cN and CN such that for any
solution of Lf = 0 satisfying N(u,Q) ≤ N we have

Hd−1({f = 0} ∩ Q) ≤ CNs(Q)d−1

and if {f = 0} ∩ 1/2Q 6= ∅ then

Hd−1({f = 0} ∩ Q) ≥ cNs(Q)d−1.
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Induction base 2

Partition Q into small cubes q with side-length Ce−a/Ns(Q).
We count how many of cubes 2q intersect the zero set Zf .
Denote this number by L.

For any q we have that sup2q |f | ≥ Ce−a supQ |f | from the
estimate on the doubling index. If f is positive in 2q then by
the Harnack inequality q does not intersect Ea.

Then
|Ea| ≤ Ls(q)d
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Number of cubes intersecting the zero set

It remains to estimate L,

CNs(Q)d−1 ≥ Hd−1(Zf∩Q) =
L∑

j=1

Hd−1(Zf∩qj) ≥ LcNs(q)d−1

We have also s(q) = Ce−a/Ns(Q) and then

Ls(q)d ≤ CN(cN)−1s(q)s(Q)d−1 = bNe−a/Ns(Q)d .

Combining with the previous estimate we get the statement of
induction base 2.
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Choosing the right notation

By relieving the brain of all unnecessary work, a good notation
sets it free to concentrate on more advanced problems, and, in
effect, increases the mental power of the race.

Alfred North Whitehead, "‘An Introduction to Mathematics"’
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Induction step
Let Q0 be the unit cube in Rd and let

m(f , a) = |{x ∈ Q0 : |u(x)| < e−a sup
Q0

|f |}|,

and
M(N, a) = sup

∗
m(f , a),

where the supremum is taken over all elliptic operators
div(A∇·) and functions f satisfying the following conditions in
CdQ0:
(i) A(x) = [aij(x)]1≤i ,j≤n is a symmetric uniformly elliptic

matrix with Lipschitz entries.
(ii) f is a solution to div(A∇f ) = 0 in CdQ0,
(iii) N(f ,Q0) ≤ N.
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Partition lemma in action

We want to show by induction that M(N, a) ≤ Ce−βa/N .

We divide Q into Bd small cubes q and deduce a recursive
inequality for M(N, a).

M(N, a) ≤ Bd(M(N/2, a1)B−d) + Bd−γ(M(N, a1)B−d)

Here a1 = a − cN logB it appears since supQ0
|f | and supq |f |

differs, but we have supq |f | ≥ B−cN supQ |f |.

M(N, a) ≤ M(N/2, a − cN logB) + B−γM(N, a − cN logB)

≤ Ce−βa/N (e−βa/NBcβ + B−γBcβ)
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