Remez inequality and propagation of smallness for solutions of second order elliptic PDEs **Part V. More results and questions**

Eugenia Malinnikova NTNU

March 2018

E. Malinnikova Propagation of smallness for elliptic PDEs

(日)(4月)(4日)(4日)(日)

Sac

Two lemmas of A.Logunov

The two quantitative results on propagation of smallness can be formulated in terms of the frequency function. Let LF = 0 in the ball B_R , R >> 1

Lemma (Simplex lemma, Logunov, 2016) Suppose that $\{x_j\} \subset B_1$ are the vertices of a non-degenerate simplex, $r < \min_{j \neq k} |x_j - x_k|$ and $d > \max |x_j - x_k|$. Let further x_0 be the barycenter of the simplex. There exists c > 0and N_0 such that if $N(x_j, r) > N \ge N_0$ then $N(x_0, 2d) > (1 + c)N$.

Two lemmas of A.Logunov

The two quantitative results on propagation of smallness can be formulated in terms of the frequency function. Let LF = 0 in the ball B_R , R >> 1

Lemma (Simplex lemma, Logunov, 2016)

Suppose that $\{x_j\} \subset B_1$ are the vertices of a non-degenerate simplex, $r < \min_{j \neq k} |x_j - x_k|$ and $d > \max |x_j - x_k|$. Let further x_0 be the barycenter of the simplex. There exists c > 0 and N_0 such that if $N(x_j, r) > N \ge N_0$ then $N(x_0, 2d) > (1 + c)N$.

Lemma (Hyperplane lemma, Logunov, 2016) Suppose that $\{x_j\}_{j=1}^{A^{d-1}}$ are points ion the $B_1 \cap \{x_d = 0\}$ that form a lattice on the hyperplane and $N(x_j, r) > N$ for each j then N(0, 1) > (1 + c)N.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - のへで

Distribution of the frequency function

Combining two lemmas above and using simple iteration procedure one can obtain the following statement of the distribution of cubes with large doubling index:

Corollary

Let Lf = 0 in CQ and $N = N_f(Q)$, there exists B such that when Q is partitioned into B^d small cubes q the number of cubes with $N_f(q) > N/(1 + \epsilon)$ is bounded by $B^{d-1-\gamma}$.

Propagation of smallness from sets of co-dimension less than one

The assumption that *E* has positive *d*-dimensional Lebesgue measure can be relaxed. It is enough to assume that the dimension of *E* is larger than d - 1, as in the analytic case. We fix the Hausdorff content of *E* of some order $d - 1 + \delta$ with $\delta > 0$ instead.

· ロト (得) (臣) (臣) (臣)

Propagation of smallness from sets of co-dimension less than one

The assumption that *E* has positive *d*-dimensional Lebesgue measure can be relaxed. It is enough to assume that the dimension of *E* is larger than d - 1, as in the analytic case. We fix the Hausdorff content of *E* of some order $d - 1 + \delta$ with $\delta > 0$ instead.

Remind that the Hausdorff content of a set $E \subset \mathbf{R}^d$ is

$$C^s_H(E) = \inf \big\{ \sum_j r^s_j : E \subset \cup_j B(x_j, r_j) \big\},\$$

and the Hausdorff dimension of E is defined as

$$\dim_H(E) = \inf\{s : C^s_H(E) = 0\}.$$

Propagation of smallness for the gradients of solutions

let Lf = 0 then the inequality

$$\sup_{\mathcal{K}} |\nabla f| \le C (\sup_{E} |\nabla f|)^{\alpha} (\sup_{\Omega} |\nabla f|)^{1-\alpha}, \tag{1}$$

holds for all sets E with Hausdorff dimension

$$\dim_H(E) > d-1-c.$$

(Constants depend on the Hausdorff content only).

E. Malinnikova Propagation of smallness for elliptic PDEs

Propagation of smallness for the gradients of solutions

let Lf = 0 then the inequality

$$\sup_{\mathcal{K}} |\nabla f| \le C (\sup_{E} |\nabla f|)^{\alpha} (\sup_{\Omega} |\nabla f|)^{1-\alpha}, \tag{1}$$

holds for all sets E with Hausdorff dimension

$$\dim_H(E) > d-1-c.$$

(Constants depend on the Hausdorff content only). Question: Is it true when $\dim_H(E) > d - 2$?

E. Malinnikova Propagation of smallness for elliptic PDEs

A related question

Conjecture 1 (Fang-Hua Lin). Let *h* be a non-zero harmonic function in the unit ball $B_1 \subset \mathbb{R}^d$, $d \ge 3$. Consider

$$N = \log \frac{\sup_{B_1} |\nabla h|}{\sup_{B_{1/2}} |\nabla h|}$$

Is it true that

$$H^{d-2}(\{\nabla h=0\}\cap B_{1/2})\leq C_dN^2$$

for some C_d depending only on the dimension?

(日) (同) (王) (王) (王) (王)

Cauchy uniquenss from measurable sets on the boundary

Conjecture 2. Assume that u is a harmonic function in the unit ball $B_1 \subset \mathbb{R}^3$ and u is C^{∞} -smooth in the closed ball $\overline{B_1}$. Let $S \subset \partial B_1$ be any closed set with positive area. Is it true that $\nabla u = 0$ on S implies $\nabla u \equiv 0$?

Remez inequality for eigenfunctions

Let (M, g) be a C^{∞} smooth closed Riemannian manifold and let Δ denote the Laplace operator on M. The Remez type inequality for harmonic functions implies the following bound for Laplace eigenfunctions, which was conjectured by Donnelly and Fefferman.

Remez inequality for eigenfunctions

Let (M, g) be a C^{∞} smooth closed Riemannian manifold and let Δ denote the Laplace operator on M. The Remez type inequality for harmonic functions implies the following bound for Laplace eigenfunctions, which was conjectured by Donnelly and Fefferman.

For any subset E of M with positive volume the following holds:

$$\sup_{E} |\varphi_{\lambda}| \ge \frac{1}{C} \sup_{M} |\varphi_{\lambda}| \left(\frac{|E|}{C|M|}\right)^{C\sqrt{\lambda}}, \quad (2)$$

where C = C(M,g) > 1 does not depend on E and λ .

E. Malinnikova Propagation of smallness for elliptic PDEs

More about eigenfunctions

Looking at the following example of spherical harmonics $u(x, y, z) = \Re(x + iy)^n$ one can see that L^2 norm of restriction of u on the unit sphere is concentrated near equator very fast and |u| is exponentially small on most of the unit sphere.

More about eigenfunctions

Looking at the following example of spherical harmonics $u(x, y, z) = \Re(x + iy)^n$ one can see that L^2 norm of restriction of u on the unit sphere is concentrated near equator very fast and |u| is exponentially small on most of the unit sphere.

This example shows that a sequence Laplace eigenfunctions can be $e^{-c\sqrt{\lambda}}$ small on a fixed open subset of the manifold.

More about eigenfunctions

Looking at the following example of spherical harmonics $u(x, y, z) = \Re(x + iy)^n$ one can see that L^2 norm of restriction of u on the unit sphere is concentrated near equator very fast and |u| is exponentially small on most of the unit sphere.

This example shows that a sequence Laplace eigenfunctions can be $e^{-c\sqrt{\lambda}}$ small on a fixed open subset of the manifold.

It seems that for negatively curved Riemannian manifolds one can prove better versions of the Remez inequality.

Theorem (Bourgain-Dyatlov, Dyatlov-Jin, 2017)

Under assumption that (M, g) is a closed Riemannian surface with constant negative curvature the following inequality holds for Laplace eigenfunctions on M. Given an open subset E of M there exists c = c(E, M, g) > 0 such that

$$\int_{E} \varphi_{\lambda}^{2} \ge c \int_{M} \varphi_{\lambda}^{2}$$

The constant c does not depend on the eigenvalue λ . Note that the situation on closed surfaces of constant negative curvature is different from the case of the sphere.

Traces on curves

A beautiful result by Bourgain and Rudnick states that on a two dimensional torus $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ equipped with the standard metric the toral Laplace eigenfunctions φ_{λ} satisfy L^2 lower and upper restriction bounds on curves.

Namely, if S is a smooth curve on T^2 with non-zero curvature and $\lambda > const(S)$, then

$$c\|\varphi_{\lambda}\|_{L^{2}(S)} \leq \|\varphi_{\lambda}\|_{L^{2}(T^{2})} \leq C\|\varphi_{\lambda}\|_{L^{2}(S)}.$$

In particular that implies that on a given smooth curve, which is not geodesic, only a finite number of Laplace eigenfunctions can vanish.

Traces on curves

A beautiful result by Bourgain and Rudnick states that on a two dimensional torus $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ equipped with the standard metric the toral Laplace eigenfunctions φ_{λ} satisfy L^2 lower and upper restriction bounds on curves.

Namely, if S is a smooth curve on T^2 with non-zero curvature and $\lambda > const(S)$, then

$$c\|\varphi_{\lambda}\|_{L^{2}(S)} \leq \|\varphi_{\lambda}\|_{L^{2}(T^{2})} \leq C\|\varphi_{\lambda}\|_{L^{2}(S)}.$$

In particular that implies that on a given smooth curve, which is not geodesic, only a finite number of Laplace eigenfunctions can vanish.

We don't know if this result holds on the sphere.

THANK YOU FOR YOUR ATTENTION !

E. Malinnikova Propagation of smallness for elliptic PDEs