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Two lemmas of A.Logunov

The two quantitative results on propagation of smallness can
be formulated in terms of the frequency function. Let LF = 0
in the ball BR , R >> 1

Lemma (Simplex lemma, Logunov, 2016)
Suppose that {xj} ⊂ B1 are the vertices of a non-degenerate
simplex, r < minj 6=k |xj − xk | and d > max |xj − xk |. Let
further x0 be the barycenter of the simplex. There exists c > 0
and N0 such that if N(xj , r) > N ≥ N0 then
N(x0, 2d) > (1 + c)N.

Lemma (Hyperplane lemma, Logunov, 2016)
Suppose that {xj}A

d−1

j=1 are points ion the B1 ∩ {xd = 0} that
form a lattice on the hyperplane and N(xj , r) > N for each j
then N(0, 1) > (1 + c)N.
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Distribution of the frequency function

Combining two lemmas above and using simple iteration
procedure one can obtain the following statement of the
distribution of cubes with large doubling index:

Corollary
Let Lf = 0 in CQ and N = Nf (Q), there exists B such that
when Q is partitioned into Bd small cubes q the number of
cubes with Nf (q) > N/(1 + ε) is bounded by Bd−1−γ.
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Propagation of smallness from sets of co-dimension less
than one

The assumption that E has positive d -dimensional Lebesgue
measure can be relaxed. It is enough to assume that the
dimension of E is larger than d − 1, as in the analytic case.
We fix the Hausdorff content of E of some order d − 1 + δ
with δ > 0 instead.

Remind that the Hausdorff content of a set E ⊂ Rd is

C s
H(E ) = inf

{∑
j

r s
j : E ⊂ ∪jB(xj , rj)

}
,

and the Hausdorff dimension of E is defined as

dimH(E ) = inf{s : C s
H(E ) = 0}.
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Propagation of smallness for the gradients of solutions

let Lf = 0 then the inequality

sup
K
|∇f | ≤ C (sup

E
|∇f |)α(sup

Ω
|∇f |)1−α, (1)

holds for all sets E with Hausdorff dimension

dimH(E ) > d − 1− c .

(Constants depend on the Hausdorff content only).

Question: Is it true when dimH(E ) > d − 2?
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A related question

Conjecture 1 (Fang-Hua Lin). Let h be a non-zero harmonic
function in the unit ball B1 ⊂ Rd , d ≥ 3. Consider

N = log
supB1

|∇h|
supB1/2

|∇h|

Is it true that

Hd−2({∇h = 0} ∩ B1/2) ≤ CdN2

for some Cd depending only on the dimension?
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Cauchy uniquenss from measurable sets on the boundary

Conjecture 2. Assume that u is a harmonic function in the
unit ball B1 ⊂ R3 and u is C∞-smooth in the closed ball B1.
Let S ⊂ ∂B1 be any closed set with positive area. Is it true
that ∇u = 0 on S implies ∇u ≡ 0?
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Remez inequality for eigenfunctions

Let (M, g) be a C∞ smooth closed Riemannian manifold and
let ∆ denote the Laplace operator on M. The Remez type
inequality for harmonic functions implies the following bound
for Laplace eigenfunctions, which was conjectured by Donnelly
and Fefferman.

For any subset E of M with positive volume the following
holds:

sup
E
|ϕλ| ≥

1
C

sup
M
|ϕλ|

(
|E |

C |M|

)C
√
λ

, (2)

where C = C (M, g) > 1 does not depend on E and λ.
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More about eigenfunctions

Looking at the following example of spherical harmonics
u(x , y , z) = <(x + iy)n one can see that L2 norm of restriction
of u on the unit sphere is concentrated near equator very fast
and |u| is exponentially small on most of the unit sphere.

This example shows that a sequence Laplace eigenfunctions
can be e−c

√
λ small on a fixed open subset of the manifold.

It seems that for negatively curved Riemannian manifolds one
can prove better versions of the Remez inequality.
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Surfaces of negative curvature

Theorem (Bourgain-Dyatlov, Dyatlov-Jin, 2017)
Under assumption that (M, g) is a closed Riemannian surface
with constant negative curvature the following inequality holds
for Laplace eigenfunctions on M. Given an open subset E of
M there exists c = c(E ,M, g) > 0 such that

ˆ
E
ϕ2
λ ≥ c

ˆ
M
ϕ2
λ.

The constant c does not depend on the eigenvalue λ. Note
that the situation on closed surfaces of constant negative
curvature is different from the case of the sphere.

E. Malinnikova Propagation of smallness for elliptic PDEs



Traces on curves

A beautiful result by Bourgain and Rudnick states that on a
two dimensional torus T 2 = R2/Z2 equipped with the
standard metric the toral Laplace eigenfunctions ϕλ satisfy L2

lower and upper restriction bounds on curves.

Namely, if S is a smooth curve on T 2 with non-zero curvature
and λ > const(S), then

c‖ϕλ‖L2(S) ≤ ‖ϕλ‖L2(T 2) ≤ C‖ϕλ‖L2(S).

In particular that implies that on a given smooth curve, which
is not geodesic, only a finite number of Laplace eigenfunctions
can vanish.

We don’t know if this result holds on the sphere.
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THANK YOU FOR YOUR ATTENTION !
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