On a class of 3-algebras

Andrea Santi University of Bologna

Winter School in Geilo, Norway: Geometry, Analysis and Physics, 5th-9th March 2018

Based on joint work with N. Cantarini and A. Ricciardo arXiv:1710.05375

<ロト < 同 ト < 三 ト < 三 ト < 三 ・ の < ()</p>

Plan of the talk

- Jordan algebras and Jordan triple systems
- Triple systems in Geometry and Supergravity
- Kantor triple systems
- TKK construction
- Infinite-dimensional and finite-dimensional Kantor triple systems

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Classification of Kantor triple systems
- Exceptional Kantor triple systems

Jordan algebras

Def. A Jordan algebra is a commutative algebra A satisfying $a\circ (b\circ a^2)=(a\circ b)\circ a^2$

for all $a, b \in A$.

Jordan algebras

Def. A Jordan algebra is a commutative algebra A satisfying

$$a \circ (b \circ a^2) = (a \circ b) \circ a^2$$

for all $a, b \in A$.

Jordan, von Neumann and Wigner classified in '34 finite-dimensional simple formally real Jordan algebras:

• the algebras $\mathfrak{h}_n^{\mathbb{R}}$, $\mathfrak{h}_n^{\mathbb{C}}$, $\mathfrak{h}_n^{\mathbb{H}}$ of Hermitian real, complex and quaternionic $n \times n$ matrices with multiplication

$$a \circ b = \frac{1}{2}(ab + ba)$$

• the spin factors $J(\mathbb{R}^n)=\mathbb{R}^n\oplus\mathbb{R}$ with multiplication

$$(v, \alpha) \circ (w, \beta) = (\alpha w + \beta v, \langle v, w \rangle + \alpha \beta)$$

• the Albert algebra $\mathfrak{h}_3^{\mathbb{O}}$ of 3×3 Hermitian matrices over octonions

Jordan triple systems

Given any Jordan algebra (A, \circ) one can define a triple product on A by

$$(xyz) := (x \circ y) \circ z + (z \circ y) \circ x - (x \circ z) \circ y$$

where $x, y, z \in A$. It holds:

1.
$$(uv(xyz)) = ((uvx)yz) - (x(vuy)z) + (xy(uvz))$$

2. $(xzy) = (yzx)$

for all u, v, x, y, z.

Def. [Meyberg '70] A *Jordan triple system* (shortly, JTS) is a v.s. with a triple product satisfying 1. and 2. above.

Jordan triple systems

Examples of JTS.

• the space $Mat(p,q;\mathbb{K})$ of $p \times q$ matrices over $\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}$ with

$$(xyz) = xy^*z + zy^*x$$

and subalgebras (e.g. Hermitian matrices $\mathfrak{h}_p^{\mathbb{K}}$ when p = q)

- the spin factors $J(\mathbb{R}^n)$ with the triple product naturally induced by Jordan multiplication
- the Albert algebra β₃[□] with the induced triple product and its subalgebra M(1, 2; □)

The classification of finite-dimensional simple real JTS is due to Loos in '77 and Neher in '80.

Triple systems in Geometry and Supergravity

- Jordan algebras and Jordan triple systems are used in theory of *Hermitian* symmetric spaces [Satake, Bertram] and in *CR geometry* [Kaup, Zaitsev]
- Triple systems satisfying similar (but different) axioms are closely related to *quaternionic Kähler symmetric spaces* [Wolf '65; Alekseevsky, Cortés '05]
- Jordan algebras were used to construct N = 2 Maxwell-Einstein D = 5 supergravity theories [Günaydin, Sierra, Townsend '84]
- N = 5 3-algebras appear in D = 3 superconformal Chern-Simons theories describing dynamics of branes in supergravity [Aharony, Bergman, Jafferis' 08], [de Medeiros, Figueroa-O'Farrill, Méndez-Escobar, Ritter '09]

Kantor triple systems

I. L. Kantor introduced in '72 a generalization of Jordan triple systems.

Def. A Kantor triple system (shortly, KTS) is a v.s. V with a triple product satisfying

1.
$$(uv(xyz)) = ((uvx)yz) - (x(vuy)z) + (xy(uvz))$$

2.
$$K_{K_{uv}(x)y} = K_{(yxu)v} - K_{(yxv)u}$$

for all $u, v, x, y, z \in V$. The "Kantor tensor"

$$K_{xy}(z) = (xzy) - (yzx)$$

measures the failure of the product to be symmetric in outer arguments. If $K_{xy} = 0$ for all $x, y \in V$ then one gets a JTS.

Kantor triple systems

Examples of KTS.

• The space $\mathrm{Mat}(p,q;\mathbb{K})$ of $p\times q$ matrices over $\mathbb{K}=\mathbb{R},\mathbb{C},\mathbb{H}$ with

$$(xyz) = xy^*z + zy^*x - zx^*y$$

• The space $\operatorname{Mat}(p,q;\mathbb{K}) imes \operatorname{Mat}(q,r;\mathbb{K})$ with mixed triple product

$$\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \right) = \begin{pmatrix} x_1 y_1^* z_1 + z_1 y_1^* x_1 - z_1 x_2 y_2^* \\ x_2 y_2^* z_2 + z_2 y_2^* x_2 - y_1^* x_1 z_2 \end{pmatrix}$$

where $x = (x_1, x_2)$, $y = (y_1, y_2)$ and $z = (z_1, z_2)$.

Simple real KTS of *classical* type that are not JTS are given by (modifications of) these examples [Asano, Kaneyuki '91]. Some examples of exceptional type have been considered by Mondoc in '07.

Construction of Kantor triple systems

Let $\mathfrak{g} = \mathfrak{g}_{-d} \oplus \cdots \oplus \mathfrak{g}_{+d}$ be a Lie algebra with a \mathbb{Z} -grading with equal depth and height. Let $\sigma : \mathfrak{g} \to \mathfrak{g}$ be a grade-reversing involution of \mathfrak{g} . Set $V = \mathfrak{g}_{-1}$ and

$$(xyz) := [[x, \sigma(y)], z]$$

for all $x, y, z \in V$.

Construction of Kantor triple systems

Let $\mathfrak{g} = \mathfrak{g}_{-d} \oplus \cdots \oplus \mathfrak{g}_{+d}$ be a Lie algebra with a \mathbb{Z} -grading with equal depth and height. Let $\sigma : \mathfrak{g} \to \mathfrak{g}$ be a grade-reversing involution of \mathfrak{g} . Set $V = \mathfrak{g}_{-1}$ and

$$(xyz) := [[x, \sigma(y)], z]$$

for all $x, y, z \in V$. Then

$$\begin{aligned} (uv(xyz)) &= [[u, \sigma(v)], [[x, \sigma(y)], z]] \\ &= [[[[u, \sigma(v)], x], \sigma(y)], z] + [[x, [[u, \sigma(v)], \sigma(y)]], z] + [[x, \sigma(y)], [[u, \sigma(v)], z]] \\ &= ((uvx)yz) + [[x, \sigma[[\sigma(u), v], y]], z] + (xy(uvz)) \\ &= ((uvx)yz) - (x(vuy)z) + (xy(uvz)) , \end{aligned}$$

for all $u, v, x, y, z \in V$. In other words the *principal identity* of KTS holds.

Construction of Kantor triple systems

Let $\mathfrak{g} = \mathfrak{g}_{-d} \oplus \cdots \oplus \mathfrak{g}_{+d}$ be a Lie algebra with a \mathbb{Z} -grading with equal depth and height. Let $\sigma : \mathfrak{g} \to \mathfrak{g}$ be a grade-reversing involution of \mathfrak{g} . Set $V = \mathfrak{g}_{-1}$ and

$$(xyz) := [[x, \sigma(y)], z]$$

for all $x, y, z \in V$.

• If depth d = 1 then

$$K_{xy}(z) = (xzy) - (yzx) = [[x, \sigma(z)], y] - [[y, \sigma(z)], x]$$
$$= [[x, y], \sigma(z)] = 0$$

<ロト < 同 ト < 三 ト < 三 ト < 三 ・ の < ()</p>

that is the Kantor tensors all vanish. This is the case of JTS.

• *KTS* correspond to *depth* d = 2.

TKK construction revisited

Let V be a centerless KTS and define the operators, for $x, y, z \in V$:

$$L_{xy}(z) := (xyz), \quad \varphi_x(z) := L_{zx}, \quad D_{xy}(z) := -\varphi_{K_{xy}(z)}.$$

$$\mathfrak{g} = \mathfrak{g}(V) = \langle K_{xy} \rangle \oplus V \oplus \langle L_{xy} \rangle \oplus \langle \varphi_x \rangle \oplus \langle D_{xy} \rangle$$
$$-2 \quad -1 \quad 0 \quad 1 \quad 2$$

The Lie bracket is defined by

$$[x, y] := K_{xy}, \qquad [A, z] := A(z)$$

for A either L_{xy} , φ_x or D_{xy} and extended using

• transitivity (if $A \in \mathfrak{g}_i$, $i \ge 0$, and [A, z] = 0 for all $z \in \mathfrak{g}_{-1}$ then A = 0)

• Jacobi identity, since \mathfrak{g} is fundamental $(\mathfrak{g}_{-1} \text{ generates } \mathfrak{g}_{-2})$.

TKK construction revisited

Let V be a centerless KTS and define the operators, for $x, y, z \in V$:

$$L_{xy}(z) := (xyz), \quad \varphi_x(z) := L_{zx}, \quad D_{xy}(z) := -\varphi_{K_{xy}(z)}.$$

$$\mathfrak{g} = \mathfrak{g}(V) = \langle K_{xy} \rangle \oplus V \oplus \langle L_{xy} \rangle \oplus \langle \varphi_x \rangle \oplus \langle D_{xy} \rangle$$
$$-2 \quad -1 \quad 0 \quad 1 \quad 2$$

- $\mathfrak{g}(V)$ is a subalgebra of the Tanaka prolongation \mathfrak{g}^{∞} of $\mathfrak{m} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$;
- The following map is a grade-reversing involution of $\mathfrak{g}(V)$

$$\sigma: \qquad K_{xy} \longleftrightarrow D_{xy} , \qquad x \longleftrightarrow -\varphi_x , \qquad L_{xy} \longleftrightarrow -L_{yx}$$

TKK construction revisited

Thm I. There is one-to-one correspondence between simple KTS V and pairs (\mathfrak{g}, σ) , where $\mathfrak{g} = \mathfrak{g}_{-2} \oplus \cdots \oplus \mathfrak{g}_2$ is simple Lie algebra with a 5-grading and σ a grade-reversing involution. Furthermore \mathfrak{g} is finite-dimensional (resp. linearly compact) if and only if V is finite-dimensional (resp. linearly compact).

Classification of Kantor triple systems

We classified the simple KTS over \mathbb{C} . Let us start with linearly compact case. By a well-known theorem of E. Cartan, simple *infinite-dimensional Lie algebras* of vector fields on an *m*-dimensional manifold are (locally, formally) isomorphic to:

• $W_m = \left\{ \sum_{i=1}^m P_i \frac{\partial}{\partial x_i} \mid P_i \in \mathbb{C}[[x_1, \dots, x_m]] \right\}$

•
$$S_m = \left\{ X \in W_m \mid \operatorname{div}(X) = 0 \right\}$$

- $H_m = \left\{ X \in W_m \mid \mathcal{L}_X \omega = 0 \right\} (m = 2k)$, where $\omega = \sum_{i=1}^k dx_i \wedge dx_{k+i}$ is symplectic form
- $K_m = \left\{ X \in W_m \mid \mathcal{L}_X \alpha = f \alpha \text{ for } f \in \mathbb{C}[[x_1, \dots, x_m]] \right\} (m = 2k + 1)$ where $\alpha = dx_m + \sum_{i=1}^k x_i dx_{k+i}$ is contact form

▲□▶▲□▶▲□▶▲□▶ □ のへで

Infinite-dimensional KTS

Thm II. There are *no infinite-dimensional simple* linearly compact KTS. **Proof.** Any \mathbb{Z} -grading of W_m is determined by assigning degrees

$$\deg(x_i) = k_i$$
, $\deg(\frac{\partial}{\partial x_i}) = -k_i$,

for a m-tuple of integers (k_1,\ldots,k_m) . In particular

$$\deg(x_i^n \frac{\partial}{\partial x_j}) = nk_i - k_j$$

and W_m does not admit any 5-grading ($\mathfrak{g}_i \neq 0$ for infinitely many *i*). Similarly for S_m , H_m and K_m .

Structure theory for finite-dimensional KTS

Problem: How to classify the grade-reversing involutions of finite-dimensional simple 5-graded Lie algebras?

Thm III. There is a bijection between isomorphism classes of (\mathfrak{g}, σ) and isomorphism classes of (\mathfrak{g}^o, θ) , where \mathfrak{g} is a simple complex \mathbb{Z} -graded Lie algebra with a grade-reversing involution σ and \mathfrak{g}^o is a real absolutely simple \mathbb{Z} -graded Lie algebra with a grade-reversing Cartan involution.

Solution:

Finite dimensional simple KTS over \mathbb{C} are in one-to-one correspondence with 5-gradings of real forms of simple complex Lie algebras.

The algebra of derivations

Thm IV. Let V be a simple KTS with associated real form (\mathfrak{g}^o, θ) . Let $(\mathfrak{g}^o_0)^{ss}$ be the semisimple part of \mathfrak{g}^o_0 and $\mathfrak{g}^o_0 = \mathfrak{k} \oplus \mathfrak{p}$ its Cartan decomposition. Then the *Lie algebra of derivations* of V is

 $\mathfrak{der}(V)=\mathfrak{k}\otimes\mathbb{C}$.

Proof. The space $\operatorname{det}(V)$ consists of (the restriction to $V = \mathfrak{g}_{-1}$ of) the 0-degree derivations of \mathfrak{g} commuting with σ . Any derivation is inner and it is known that the restriction to $(\mathfrak{g}_0^o)^{ss}$ of the Cartan involution of \mathfrak{g}^o is still a Cartan involution.

Finite-dimensional KTS

Thm V. Up to isomorphism there are 8 infinite series of classical simple KTS and 23 exceptional cases.

The exceptional KTS can be divided into three main classes, depending on the grading of the associated Lie algebra:

<ロト < 同 ト < 三 ト < 三 ト < 三 ・ の < ()</p>

- (i) of contact type if dim $\mathfrak{g}_{-2} = 1$;
- (ii) of extended Poincaré type if $\mathfrak{g}_{-2} = U$ and $\mathfrak{g}_0 \supset \mathfrak{so}(U)$;
- (iii) of *special type* otherwise.

Exceptional KTS associated to E_7

Contact type

Exceptional KTS associated to E_7

Poincaré type

Exceptional KTS associated to E_7

Special type

Exceptional KTS of special type $\mathfrak{g} = E_7$

Let η be scalar product on \mathbb{C}^7 and \sharp the associated musical isomorphism that sends $\Lambda^3(\mathbb{C}^7)^*$ to $\Lambda^3\mathbb{C}^7$. Let • be the natural projection of $\Lambda^3\mathbb{C}^7\otimes\Lambda^3(\mathbb{C}^7)^*$ to $\mathfrak{sl}(7,\mathbb{C})$.

Thm VI. The vector space $\Lambda^3(\mathbb{C}^7)^*$ with *triple product*

$$(\alpha\beta\gamma) = \frac{2}{7}\eta(\alpha,\beta)\gamma - (\beta^{\sharp} \bullet \alpha) \cdot \gamma$$

is a simple KTS with associated Lie algebra $\mathfrak{g} = E_7$ and derivation algebra $\mathfrak{so}(7,\mathbb{C})$.

Thanks!

4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 4 で