On a class of 3 -algebras

Andrea Santi
University of Bologna

Winter School in Geilo, Norway:
 Geometry, Analysis and Physics, 5th-9th March 2018

Based on joint work with N. Cantarini and A. Ricciardo arXiv:1710.05375

Plan of the talk:

- Jordan algebras and Jordan triple systems
- Triple systems in Geometry and Supergravity
- Kantor triple systems
- TKK construction
- Infinite-dimensional and finite-dimensional Kantor triple systems
- Classification of Kantor triple systems
- Exceptional Kantor triple systems

Jordan algebras

Def. A Jordan algebra is a commutative algebra A satisfying

$$
a \circ\left(b \circ a^{2}\right)=(a \circ b) \circ a^{2}
$$

for all $a, b \in A$.

Jordan algebras

Def. A Jordan algebra is a commutative algebra A satisfying

$$
a \circ\left(b \circ a^{2}\right)=(a \circ b) \circ a^{2}
$$

for all $a, b \in A$.
Jordan, von Neumann and Wigner classified in '34 finite-dimensional simple formally real Jordan algebras:

- the algebras $\mathfrak{h}_{n}^{\mathbb{R}}, \mathfrak{h}_{n}^{\mathbb{C}}, \mathfrak{h}_{n}^{\mathbb{H}}$ of Hermitian real, complex and quaternionic $n \times n$ matrices with multiplication

$$
a \circ b=\frac{1}{2}(a b+b a)
$$

- the spin factors $J\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n} \oplus \mathbb{R}$ with multiplication

$$
(v, \alpha) \circ(w, \beta)=(\alpha w+\beta v,\langle v, w\rangle+\alpha \beta)
$$

- the Albert algebra $\mathfrak{h}_{3}^{\oplus}$ of 3×3 Hermitian matrices over octonions

Jordan triple systems
Given any Jordan algebra (A, \circ) one can define a triple product on A by

$$
(x y z):=(x \circ y) \circ z+(z \circ y) \circ x-(x \circ z) \circ y
$$

where $x, y, z \in A$. It holds:

1. $(u v(x y z))=((u v x) y z)-(x(v u y) z)+(x y(u v z))$
2. $(x z y)=(y z x)$
for all u, v, x, y, z.
Def. [Meyberg '70] A Jordan triple system (shortly, JTS) is a v.s. with a triple product satisfying 1. and 2. above.
Jordan triple systems

Examples of JTS.

- the space $\operatorname{Mat}(p, q ; \mathbb{K})$ of $p \times q$ matrices over $\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}$ with

$$
(x y z)=x y^{*} z+z y^{*} x
$$

and subalgebras (e.g. Hermitian matrices $\mathfrak{h}_{p}^{\mathbb{K}}$ when $p=q$)

- the spin factors $J\left(\mathbb{R}^{n}\right)$ with the triple product naturally induced by Jordan multiplication
- the Albert algebra $\mathfrak{h}_{3}^{\mathbb{D}}$ with the induced triple product and its subalgebra $M(1,2 ; \mathbb{O})$

The classification of finite-dimensional simple real JTS is due to Loos in '77 and Neher in '80.

Triple systems in Geometry and Supergravity

- Jordan algebras and Jordan triple systems are used in theory of Hermitian symmetric spaces [Satake, Bertram] and in CR geometry [Kaup, Zaitsev]
- Triple systems satisfying similar (but different) axioms are closely related to quaternionic Kähler symmetric spaces [Wolf '65; Alekseevsky, Cortés '05]
- Jordan algebras were used to construct $N=2$ Maxwell-Einstein $D=5$ supergravity theories [Günaydin, Sierra, Townsend '84]
- $N=5$ 3-algebras appear in $D=3$ superconformal Chern-Simons theories describing dynamics of branes in supergravity [Aharony, Bergman, Jafferis' 08], [de Medeiros, Figueroa-O'Farrill, Méndez-Escobar, Ritter '09]

Kantor triple systems

I. L. Kantor introduced in '72 a generalization of Jordan triple systems.

Def. A Kantor triple system (shortly, KTS) is a v.s. V with a triple product satisfying

1. $(u v(x y z))=((u v x) y z)-(x(v u y) z)+(x y(u v z))$
2. $K_{K_{u v}(x) y}=K_{(y x u) v}-K_{(y x v) u}$
for all $u, v, x, y, z \in V$. The "Kantor tensor"

$$
K_{x y}(z)=(x z y)-(y z x)
$$

measures the failure of the product to be symmetric in outer arguments. If $K_{x y}=0$ for all $x, y \in V$ then one gets a JTS.

Kantor triple systems

Examples of KTS.

- The space $\operatorname{Mat}(p, q ; \mathbb{K})$ of $p \times q$ matrices over $\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}$ with

$$
(x y z)=x y^{*} z+z y^{*} x-z x^{*} y
$$

- The space $\operatorname{Mat}(p, q ; \mathbb{K}) \times \operatorname{Mat}(q, r ; \mathbb{K})$ with mixed triple product

$$
\left(\binom{x_{1}}{x_{2}}\binom{y_{1}}{y_{2}}\binom{z_{1}}{z_{2}}\right)=\binom{x_{1} y_{1}^{*} z_{1}+z_{1} y_{1}^{*} x_{1}-z_{1} x_{2} y_{2}^{*}}{x_{2} y_{2}^{*} z_{2}+z_{2} y_{2}^{*} x_{2}-y_{1}^{*} x_{1} z_{2}}
$$

where $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$ and $z=\left(z_{1}, z_{2}\right)$.
Simple real KTS of classical type that are not JTS are given by (modifications of) these examples [Asano, Kaneyuki '91]. Some examples of exceptional type have been considered by Mondoc in ' 07 .

Construction of Kantor triple systems

Let $\mathfrak{g}=\mathfrak{g}_{-d} \oplus \cdots \oplus \mathfrak{g}_{+d}$ be a Lie algebra with a \mathbb{Z}-grading with equal depth and height. Let $\sigma: \mathfrak{g} \rightarrow \mathfrak{g}$ be a grade-reversing involution of \mathfrak{g}. Set $V=\mathfrak{g}_{-1}$ and

$$
(x y z):=[[x, \sigma(y)], z]
$$

for all $x, y, z \in V$.

Construction of Kantor triple systems

Let $\mathfrak{g}=\mathfrak{g}_{-d} \oplus \cdots \oplus \mathfrak{g}_{+d}$ be a Lie algebra with a \mathbb{Z}-grading with equal depth and height. Let $\sigma: \mathfrak{g} \rightarrow \mathfrak{g}$ be a grade-reversing involution of \mathfrak{g}. Set $V=\mathfrak{g}_{-1}$ and

$$
(x y z):=[[x, \sigma(y)], z]
$$

for all $x, y, z \in V$. Then

$$
\begin{aligned}
(u v(x y z)) & =[[u, \sigma(v)],[[x, \sigma(y)], z]] \\
& =[[[[u, \sigma(v)], x], \sigma(y)], z]+[[x,[[u, \sigma(v)], \sigma(y)]], z]+[[x, \sigma(y)],[[u, \sigma(v)], z]] \\
& =((u v x) y z)+[[x, \sigma[[\sigma(u), v], y]], z]+(x y(u v z)) \\
& =((u v x) y z)-(x(v u y) z)+(x y(u v z)),
\end{aligned}
$$

for all $u, v, x, y, z \in V$. In other words the principal identity of KTS holds.

Construction of Kantor triple systems

Let $\mathfrak{g}=\mathfrak{g}_{-d} \oplus \cdots \oplus \mathfrak{g}_{+d}$ be a Lie algebra with a \mathbb{Z}-grading with equal depth and height. Let $\sigma: \mathfrak{g} \rightarrow \mathfrak{g}$ be a grade-reversing involution of \mathfrak{g}. Set $V=\mathfrak{g}_{-1}$ and

$$
(x y z):=[[x, \sigma(y)], z]
$$

for all $x, y, z \in V$.

- If depth $d=1$ then

$$
\begin{aligned}
K_{x y}(z) & =(x z y)-(y z x)=[[x, \sigma(z)], y]-[[y, \sigma(z)], x] \\
& =[[x, y], \sigma(z)]=0
\end{aligned}
$$

that is the Kantor tensors all vanish. This is the case of JTS.

- KTS correspond to depth $d=2$.

TKK construction revisited

Let V be a centerless KTS and define the operators, for $x, y, z \in V$:

$$
\begin{aligned}
& L_{x y}(z):=(x y z), \quad \varphi_{x}(z):=L_{z x}, \quad D_{x y}(z):=-\varphi_{K_{x y}(z)} . \\
& \mathfrak{g}=\mathfrak{g}(V)=\left\langle K_{x y}\right\rangle \oplus \quad V \quad \oplus\left\langle L_{x y}\right\rangle \oplus\left\langle\varphi_{x}\right\rangle \oplus\left\langle D_{x y}\right\rangle \\
& \begin{array}{lllll}
-2 & -1 & 0 & 1 & 2
\end{array}
\end{aligned}
$$

The Lie bracket is defined by

$$
[x, y]:=K_{x y}, \quad[A, z]:=A(z)
$$

for A either $L_{x y}, \varphi_{x}$ or $D_{x y}$ and extended using

- transitivity (if $A \in \mathfrak{g}_{i}, i \geqslant 0$, and $[A, z]=0$ for all $z \in \mathfrak{g}_{-1}$ then $A=0$)
- Jacobi identity, since \mathfrak{g} is fundamental $\left(\mathfrak{g}_{-1}\right.$ generates $\left.\mathfrak{g}_{-2}\right)$.

TKK construction revisited
Let V be a centerless KTS and define the operators, for $x, y, z \in V$:

$$
\begin{aligned}
& L_{x y}(z):=(x y z), \quad \varphi_{x}(z):=L_{z x}, \quad D_{x y}(z):=-\varphi_{K_{x y}(z)} . \\
& \mathfrak{g}=\mathfrak{g}(V)=\left\langle K_{x y}\right\rangle \oplus \quad \mid \quad \oplus\left\langle L_{x y}\right\rangle \oplus\left\langle\varphi_{x}\right\rangle \oplus\left\langle D_{x y}\right\rangle \\
& \begin{array}{lllll}
-2 & -1 & 0 & 1 & 2
\end{array}
\end{aligned}
$$

- $\mathfrak{g}(V)$ is a subalgebra of the Tanaka prolongation \mathfrak{g}^{∞} of $\mathfrak{m}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$;
- The following map is a grade-reversing involution of $\mathfrak{g}(V)$

$$
\sigma: \quad K_{x y} \longleftrightarrow D_{x y}, \quad x \longleftrightarrow-\varphi_{x}, \quad L_{x y} \longleftrightarrow-L_{y x}
$$

TKK construction revisited

Thm I. There is one-to-one correspondence between simple KTS V and pairs (\mathfrak{g}, σ), where $\mathfrak{g}=\mathfrak{g}_{-2} \oplus \cdots \oplus \mathfrak{g}_{2}$ is simple Lie algebra with a 5 -grading and σ a grade-reversing involution. Furthermore \mathfrak{g} is finite-dimensional (resp. linearly compact) if and only if V is finite-dimensional (resp. linearly compact).

Classification of Kantor triple systems

We classified the simple $K T S$ over \mathbb{C}. Let us start with linearly compact case. By a well-known theorem of E. Cartan, simple infinite-dimensional Lie algebras of vector fields on an m-dimensional manifold are (locally, formally) isomorphic to:

- $W_{m}=\left\{\left.\sum_{i=1}^{m} P_{i} \frac{\partial}{\partial x_{i}} \right\rvert\, P_{i} \in \mathbb{C}\left[\left[x_{1}, \ldots, x_{m}\right]\right]\right\}$
- $S_{m}=\left\{X \in W_{m} \mid \operatorname{div}(X)=0\right\}$
- $H_{m}=\left\{X \in W_{m} \mid \mathcal{L}_{X} \omega=0\right\}(m=2 k)$, where $\omega=\sum_{i=1}^{k} d x_{i} \wedge d x_{k+i}$ is symplectic form
- $K_{m}=\left\{X \in W_{m} \mid \mathcal{L}_{X} \alpha=f \alpha\right.$ for $\left.f \in \mathbb{C}\left[\left[x_{1}, \ldots, x_{m}\right]\right]\right\}(m=2 k+1)$ where $\alpha=d x_{m}+\sum_{i=1}^{k} x_{i} d x_{k+i}$ is contact form

Infinite-dimensional KTS

Thm II. There are no infinite-dimensional simple linearly compact KTS.
Proof. Any \mathbb{Z}-grading of W_{m} is determined by assigning degrees

$$
\operatorname{deg}\left(x_{i}\right)=k_{i}, \quad \operatorname{deg}\left(\frac{\partial}{\partial x_{i}}\right)=-k_{i},
$$

for a m-tuple of integers $\left(k_{1}, \ldots, k_{m}\right)$. In particular

$$
\operatorname{deg}\left(x_{i}^{n} \frac{\partial}{\partial x_{j}}\right)=n k_{i}-k_{j}
$$

and W_{m} does not admit any 5 -grading ($\mathfrak{g}_{i} \neq 0$ for infinitely many i). Similarly for S_{m}, H_{m} and K_{m}.

Structure theory for finite-dimensional KTS

Problem: How to classify the grade-reversing involutions of finite-dimensional simple 5-graded Lie algebras?

Thm III. There is a bijection between isomorphism classes of (\mathfrak{g}, σ) and isomorphism classes of $\left(\mathfrak{g}^{o}, \theta\right)$, where \mathfrak{g} is a simple complex \mathbb{Z}-graded Lie algebra with a grade-reversing involution σ and \mathfrak{g}° is a real absolutely simple \mathbb{Z}-graded Lie algebra with a grade-reversing Cartan involution.

Solution:

Finite dimensional simple KTS over \mathbb{C} are in one-to-one correspondence with 5 -gradings of real forms of simple complex Lie algebras.

The algebra of derivations
Thm IV. Let V be a simple KTS with associated real form (\mathfrak{g}^{o}, θ). Let $\left(\mathfrak{g}_{0}^{o}\right)^{s s}$ be the semisimple part of \mathfrak{g}_{0}^{o} and $\mathfrak{g}_{0}^{o}=\mathfrak{k} \oplus \mathfrak{p}$ its Cartan decomposition. Then the Lie algebra of derivations of V is

$$
\mathfrak{d e r}(V)=\mathfrak{k} \otimes \mathbb{C}
$$

Proof. The space $\mathfrak{d e r}(V)$ consists of (the restriction to $V=\mathfrak{g}_{-1}$ of) the 0 -degree derivations of \mathfrak{g} commuting with σ. Any derivation is inner and it is known that the restriction to $\left(\mathfrak{g}_{0}^{o}\right)^{s s}$ of the Cartan involution of \mathfrak{g}^{o} is still a Cartan involution.

Finite-dimensional KTS

Thm V. Up to isomorphism there are 8 infinite series of classical simple KTS and 23 exceptional cases.

The exceptional KTS can be divided into three main classes, depending on the grading of the associated Lie algebra:
(i) of contact type if $\operatorname{dim} \mathfrak{g}_{-2}=1$;
(ii) of extended Poincaré type if $\mathfrak{g}_{-2}=U$ and $\mathfrak{g}_{0} \supset \mathfrak{s o}(U)$;
(iii) of special type otherwise.

Exceptional KTS associated to E_{7}
Contact type

\mathfrak{g}°	Satake Diagram	KTS
$E V$		$\begin{aligned} & V=\mathbb{S}^{+} \\ & \mathfrak{d e r}(V)=\mathfrak{s o}(6, \mathbb{C}) \oplus \mathfrak{s o}(6, \mathbb{C}) \end{aligned}$
EVI		$\begin{aligned} & V=\mathbb{S}^{+} \\ & \mathfrak{d e r}(V)=\mathfrak{g l}(6, \mathbb{C}) \end{aligned}$
EVII		$\begin{aligned} & V=\mathbb{S}^{+} \\ & \mathfrak{d e r}(V)=\mathfrak{s o}(2, \mathbb{C}) \oplus \mathfrak{s o}(10, \mathbb{C}) \end{aligned}$

Exceptional KTS associated to E_{7}
Poincaré type

\mathfrak{g}^{o}	Satake Diagram	KTS
$E V$		

Exceptional KTS associated to E_{7}

Special type

\mathfrak{g}°	Satake Diagram	KTS
EV		$\begin{aligned} & V=\Lambda^{3}\left(\mathbb{C}^{7}\right)^{*} \\ & \mathfrak{d e v}(V)=\mathfrak{s o}(7, \mathbb{C}) \end{aligned}$
EVI		No KTS
EVII		No KTS

Exceptional KTS of special type $\mathfrak{g}=E_{7}$

Let η be scalar product on \mathbb{C}^{7} and \sharp the associated musical isomorphism that sends $\Lambda^{3}\left(\mathbb{C}^{7}\right)^{*}$ to $\Lambda^{3} \mathbb{C}^{7}$. Let \bullet be the natural projection of $\Lambda^{3} \mathbb{C}^{7} \otimes \Lambda^{3}\left(\mathbb{C}^{7}\right)^{*}$ to $\mathfrak{s l}(7, \mathbb{C})$.

Thm VI. The vector space $\Lambda^{3}\left(\mathbb{C}^{7}\right)^{*}$ with triple product

$$
(\alpha \beta \gamma)=\frac{2}{7} \eta(\alpha, \beta) \gamma-\left(\beta^{\sharp} \bullet \alpha\right) \cdot \gamma
$$

is a simple $K T S$ with associated Lie algebra $\mathfrak{g}=E_{7}$ and derivation algebra $\mathfrak{s o}(7, \mathbb{C})$.

Thanks!

