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1 Lecture 1

The main theme of this lecture series is the Lie algebras and Lie superalgebras
with geometric origins. We will also consider spinor fields satisfying certain PDE
Before going to the super-picture, I would like to discuss the classical picture,
as it is simpler.

1.1 Lie algebras of isometries of a Riemannian manifolds

Let (M, g) be a Riemannian manifold.

Definition 1. A vector field ξ is called a Killing vector field if its flow preserves
the metric g, or equivalently Lξg = 0.

Let ζ ∈ Ξ(M) and denote Aζ : TM → TM given by

Aζ(x) = −∇Xζ (1)

Lemma 1. ζ is Killing if Aζ is an action of so(TM).

Proof.

g(AζY, Z) = −g(∇Y ζ, Z) = g([ζ, Y ], Z)−g(∇ζY, Z) = ζ(g(Y,Z))−g(Y, [ζ, Z])−g(∇ζY,Z) = g(Y,∇ζZ)−g(Y, [ζ, Z]) = g(Y,∇Zζ) = −g(Y,AζZ)

1.2 Killing as parallel sections

Killing vector fields can be considered as parallel sections of some bundle. Con-
sider

E = so(TM)⊕ TM

and define the covariant derivative

DX(ζ,A) = (∇Xζ +A(X),∇XA−R(X, ζ))
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Where R is the curvature,

R(X,Y )Z = ∇[X,Y ]Z −∇X∇Y Z∇Y∇XZ

Proposition 1 (Kostant 1955). Parallel sections of E with respect to D are
precisely the Killing vector fields.

Proof. DX(ζ,A) = 0 if and only if A(X) = −∇Xζ (i.e. A = Aζ) and

(∇XA)Y = ∇X(AY )−A(∇XY ) = −∇X∇Y ζ +∇∇XY ζ

We take the difference

(∇XA)Y − (∇YA)X = −∇X∇Y ζ +∇∇XY ζ +∇Y∇Xζ +∇∇YXζ =

= −∇X∇Y ζ +∇Y∇Xζ +∇[X,Y ]ζ

Proposition 2. Consider the space of parallel sections of E with D. Then the
Lie bracket of Killing vector fields is

[(ζ,A), (η,B)] = (Aη −Bζ, [A,B] +R(ζ, η))

Proof.

[(ζ,A), (η,B)] = ([ζ, η],−∇[ζ, η])

∇ζη −∇ηζ = Aη −Bζ

Let

G = {ϕ : M →M diffeo with ϕ∗g = g}

and

g = {ξ ∈ D(M) : Lξg = 0}

Question 1. What kind of Lie algebra is g?

Consider the flat model M = Rn with g the Euclidean metric. Then

G = O(n) nRn

euc(n) = so(n) nRn

[A,B] = AB −BA
[A, v] = Av

[v, w] = 0
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for A,B ∈ so(n), v, w ∈ Rn. It is easy to see that this is a graded Lie algebra.
There are more flat models. Consider the sphere with the round metric,

M = Sn ⊂ Rn+1

G = O(n+ 1)

g = so(n+ 1)

Fix x ∈ Sn and write V = TxS
n, let H be the stabilizer of x in G. Then as a

vector space, g ' so(V )⊕ V and

[A,B] = AB −BA
[A, v] = Av

[v, w] = ρ(v, w) ∈ so(V )

And we have that ρ = R|x is the curvature. In particular g is not a graded Lie
algebra, but it is filtered.

Definition 2. A filtration on a Lie algebra g is a sequence of subspaces

g

missing some here. . .

Definition 3. Let g• be a filtration of g. Then the associated graded Lie algebra
g• is

g• =
⊕
n∈Z

gn

where gn = gn/gn+1

Remark 1. [gn, gm+1] + [gn+1, gm ⊂ gn+m+1]]

Theorem 1. The Lie algebra g of infinitesimal isometries of (M, g) is filtered,
and its associated graded Lie algebra is a subalgebra of euc(n). We say that g is
a filtered deformation of euc(n).

2 Lecture 2

Proof. Proof of theorem from previous lecture. We localize Killing vectors at
x ∈M . Set V = TxM .

E|x = V ⊕ so(V )

and g is a subspace of E|x. We have a short exact sequence

0→ h→ g→ V → 0

3



and V ′ = {ξ|x, with ξ ∈ g} ⊂ V , h = {ξ ∈ g with ξ|x = 0}. Hence g ' h ⊕ V
as a vector space. Taking the Lie brackets of g on h⊕ V gives

[A,B] = AB −BA
[A, v] = Av + δ(A, v) ∈ V + h

[v, w] = α(v, w) + ρ(v, w) ∈ V ′ + h

and here

α(A, v) = Xvw −Xwv

δ(A, v) = [A,Xv]−XAv

ρ(v, w) = [Xv, Xw]−Xα(v,w) +R(v, w)

2.1 Rudiments of Spinorial algebra and Spin geometry

Let (V, η) be a vector space with (positive definite) inner product.

Definition 4. The Clifford algebra Cl(V ) associated to (V, η) is the algebra
generated by V with the relation v2 = −η(v, v)1 for all v ∈ Cl(V ).

Example 1. Let {eN} be an orthonormal basis of V . Then eiej+ejei = −2δij1.

We have Cl(V ) ' ΛV , but with a different product. Cl(V ) has Lie algebra
structure via the Clifford commutator and so(V ) ' {eiej |i < j}, ei∧ej 7→ 1

2eiej .
Exponentiating this so(V ) yields the spin group

Spin(V ) = {g = v1 · · · v2k ∈ Cl(V )|vi ∈ V, η(vi, vj) = 1}

If g ∈ Spin(V ) and v ∈ V then gvg−1 ∈ V . This is the twofold cover Ad :
Spin(V ) → SO(V ). Restricting the module S of Cl(V ) to Spin(V ) we obtain
the spinor module.

2.2 Spin geometry

Let (Mn, g) be an orientable Riemannian manifold and

SO(M) = {u = (e1, . . . , en)}

be the bundle of oriented orthonormal frames. A spin structure on M is a
principal Spin(n)-bundle Spin(M) → M together with a bundle morphism
Spin(M) → SO(M) which restricts fiberwise to Ad. There are topological
obstructions to the existence of spin structures. They need not be unique.

Example 2. Let M = Sn be the homogeneous space Spin(n + 1)/Spin(n). If
we are in dimension n ≥ 2 then there exists a unique spin structure. Otherwise
there are two nonequivalent choices.

Definition 5. The oriented vector bundle S(M) = Spin(M) ×Spin(n) S is the
spinor bundle of (M, g).
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Holonomy rep Geometry number of parallel spinors
SU(n) CY 2
Sp(n) HK n+ 1
G2 ⊂ SO(7) Exceptional 1
Spin(7) ⊂ SO(8) Exceptional 1

Table 1: Complete, simply connected, irreducible Riemannian manifolds with
parallel spinors

2.3 Spinor fields satisfying special PDE

Definition 6. A spinor field ε ∈ Γ(S(M)) is

1. parallel if ∇ε = 0

2. Killing if ∇Xε = λX · ε, λ is called the Killing constant.

Theorem 2. If (M, g) admits a non-trivial parallel spinor, then it is Ricci-flat,
Ric(g) = 0.

Proof. We think of the curvature as being R ∈ End(S(M))⊗ Λ2T ∗M .

∇Xε = 0⇒ R(X,Y )ε = 0

We take the “Clifford trace” of R:

0 = 4
∑
j

ej ·R(ei, ej)ε

NowR(ei, ej) = 1
2

∑
k,lRi,j,k,lek∧el is acting on spinorsR(ei, ej) = 1

4

∑
k,lRijklek·

el · ε. Hence

0 =
∑
j,k,l

Rijklej ·ek·el·ε =
∑
j,k,l

Rijkl(ejkl−ηjkel+ηjlek)·ε =
∑
j,k,l

Rijkl(ejkl+2ηjlek)·ε

Then we use the algebraic Bianchi identity

Rijkl +Riljk +Riklj = 0

and we are left with 0 = −
∑
jklRijklηj l · ε = −

∑
k Rickek · ε. Thus if we look

at the Ricci tensor of TM , we have Ric(X) · ε = 0, thus g(Ric(X),Ric(X))i = 0
and Ric(X) = 0.

3 Lecture 3

Before we go to the super world, we will finish the classical story. Yesterday we
learned that having a parallel spinor is a sufficient condition to be Ricci-flat.

Theorem 3 (Wang 1989).
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Theorem 4. If (M, g) has a Killing spinor with Killing constant λ ∈ C, then
Ric = 4λ2(n− 1)g, i.e. M is Einstein and λ is real or pure imaginary.

Let us consider the transpose of Clifford multiplication V ⊗ S → S with
respect to η and 〈, 〉. “Dirac aneut”K : S ⊗ S → V given by η(K(s1, s2), v) =
〈s1, v · s2〉.

Lemma 2. Let ε1, ε2 be Killing spinors with the same Killing constant. Then
ξ = K(ε1, ε2) is a Killing vector.

Proof.

g(∇Xξ, Y ) = g(K(∇Xε1, ε2), Y ) + g(K(ε1,∇Xε2), Y ) =

λ〈X · ε1, Y · ε2〉+ λ〈ε1, Y ·X · ε2〉 =

λ〈ε1, (Y ·X −X · Y ) · ε2〉

3.1 Generic contraction of Lie algebras (FOF)

unreadable

Definition 7.
Lξε = ∇ξε+Aξε

3.2 Main properties of spinorial Lie derivative

ξ, η ∈ Kō, X ∈ D(M), ε ∈ ΓSM , f ∈ C∞(M).

1. [Lξ,Lη]ε = L[ξ,η]ε

2. Lξ(X · ε) = [ξ,X] · ε+X · Lξε

3. Lξ(fε) = ξ(f)ε+ fLξε

4. [Lξ,∇X ]ε = ∇[ξ,X]ε

Lemma 3. If ξ ∈ Kō then ε ∈ Ki implies Lξε ∈ Ki

Proof.

∇XLξε = Lξ∇Xε−∇[ξ,X]ε =

λLξ(X · ε)− λ[ξ,X] · ε =

λX · Lξε

Jacobi identities: Λ3K → K
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1. Λ3Kō → Kō is Jacobi for vector fields

2. Λ2Kō ⊗Ki → Ki holds as L is a representation

3. Kō ⊗ Λ2Ki → Kō is a computation. . .

4. Λ3Ki → Ki does not hold in general, it is Kō equivariance. If (Λ3K∗i ⊗
Ki)

Kō = 0 then K = Kō ⊕Ki is a Lie algebra.

3.3 Normed real division algebras

We have K = R,C,H,O. These yield corresponding Hopf fibrations:

S1 →S0

S1

S3 →S1

S2

S7 →S3

S4

S15 →S7

S8

and S× ⊂ K2, S× ' KP 1

Theorem 5. Applying the Killing algebra construction to the octonionic Hopf
fibration, one gets

E8 = so(16)⊕ R128

associated to Killing vectors on S15 and Killing spinors on S15, and

F8 = so(9)⊕ R16

Corresponding to Killing vectors and spinors on S7.

4 Lecture 4

The goal is to arrive at describing supergravity today. This will depend on rep-
resentations of the super-Poincare group. We will see the PDE which describes
this situation. I will show an example of how to construct a Killing superalgebra
from a supergravity background. We will denote the Poincare algebra by

P0̄ = so(V ) n V

The main case of interest today will be dimV = 11. Let {eN} = {e0, e1, . . . , e10}
be an orthonormal basis. In C(V ), we have

e2
0 = −1, e2

i = 1, i = 1 . . . 10
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We have

C(V ) ' R(32)⊕ R(32) ' End(S+)⊕ End(S−)

We have two inequivalent representations S±, distinguished vol|S± = ±1. For
us, we will let S = S−. On S we have a symplectic form 〈, 〉 satisfying

〈v · ei, ej〉 = −〈ei, v · ej〉

4.1 Basics about reps of the Poincare group

Relativistic quantum particles in physics are the same as irreducible unitary
representations H of P (V ), P (V ) = Spin(V ) n V . They are constructed by
Wigners “little group” method (a special case of Mackey’s theory of induced
representations).

P 2 =
∑
µ,ν

ηµeµeν ∈ U(p0̄)p0̄

Clearly

[eµ, P
2] = 0

[so(V ), P 2] = 0

because η is so(V )-invariant. Schur’s lemma yields that P 2 acts as a scalar on
any irreducible representation H. Physically this scalar is the mass m2 of the
particle. . . . something about characters on far blackboard. . . We let the “Little
group” be the maximal compact subgroup of the stabilizer,

H = Spin(10) for m2 > 0,

H = Spin(9) for m2 = 0,

Consider the bundle Spin0(V )→ Spin0(V )/H over the orbit and finite-dimensional
unitary rep U of H. (mdn rep always factors through the little group). Then
consider complex Hermitian vector bundle

E = Spin0(V )×H U

We will let H = L2(E).

Example 3. We will consider the graviton g, which is massless. This corre-
sponds to

Sym2
0W

Where W is the euclidean 9-dim rep, and the tensor power is the traceless part.
We have a 3-fold potential,

A↔ Λ3W
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and the gravitino

Ψ↔ (W ⊗ Σ)0

where Σ is the spinor rep of Spin(9) and the tensor product is once again trace-
less.

4.2 An incomplete history of supersymmetry

• 1960’s: Is there a larger group than P (V ) whose irreps correspond to
Poincare reps of different mass and spin?

• 1967: the answer is no.

• 1975: The answer is yes, more or less. This requires the introduction of
the Poincare-superalgebra

Definition 8. A Lie superalgebra is a Z2-graded vector space g0̄ ⊕ g1̄ equipped
with a bracket satisfying

1. [gī, gj̄ ] ⊂ gi+j

2. [x, y] = (−1)|x||y|[y, x]

3. [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]]

where |x| = 0 for x ∈ g0̄ and |x| = 1 for x ∈ g1̄

The Poincare superalgebra is a graded Lie superalgebra

P = so(V )⊕ S ⊕ V
P0̄ = Poincare algebra

P1̄ = S

[A,B] = AB −BA
[A, v] = Av

[v, w] = 0

[A, s] = As

[s, s] = K(s, s)

[v, s] = 0

• 1978: There exists an irrep of P for dimV = 11 with field content (g,A,Ψ).

• unreadable
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Definition 9. A supergravity background in 11D is a Lorentzian spin manifold
(M11, g, F ) where F ∈ Ω4(M) is a closed form such that the following PDE
hold.

d ∗ F =
1

2
F ∧ F Maxwell

Ric(X,Y ) =
1

2
g(iXF, iY F )− 1

6
||F ||2g(X,Y ) Einstein

δεΨ = Dε+O(Ψ), ε ∈ Γ(S(M))

Dxε = ∇Xε−
1

24
(X · F# − 3F# ·X) · ε

Definition 10. A Killing spinor is a spinor field ε ∈ Γ(S(M)) such that Dε = 0.

Example 4. M = M, F = 0. A Killing spinor is parallel with respect to the
flat metric and there are 32 independent Killing spinors.

4.2.1 Classification result of maximal SUSY backgrounds (D - flat)

• M = M, F = 0

• AdS4 × S7, F ∝ vol(AdS)

• AdS7 × S4, F ∝ vol(S4)

• A Lorentzian symmetric space KG of solvable Lie group (||F ||2 = 0)

5 Lecture 5

Today we will hear about some more recent results. Full proofs will not be avail-
able, as most of them are involved, but we can discuss some ideas. Yesterday
we heard about supergravity backgrounds, which are 11D manifolds with a cou-
pled system of PDE. Note that we let objects freely act by clifford multiplication
without explicitly using the metric.

Theorem 6 (FOF,Messer, Philip 2005). : Every supergravity background has
a canonically associated Lie superalgebra K = K0̄ ⊕K1̄.

Proof. Idea of proof:

K0̄ = {ξ ∈ D(M)|Lξg = LξF = 0}
K1̄ = {ε ∈ Γ(S(M))|Dε = 0}

Lie brackets are defined by the Dirac current and spinorial Lie derivative. Key
points:

1. K = K(ε, ε) is a Killing vector field. Then we use that iKF = −dω(2),
where ω(2)(X,Y ) = 〈ε, (X ∧ Y ) · ε〉, and thus LKF = (diK + iKd)F = 0
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Background K = K0̄ ⊕K1̄

M P
AdS4 × S7 osp(8|4)
AdS7 × S4 osp(6, 2|4)
KG Solvable Lie superalgebra

Table 2: Examples of backgrounds with Lie superalgebras

2. The Jacobi identity with 3 odd elements: LKε = 0. LKε = ∇Kε+AKε =
1
24 (K · F − 3F ·K) · ε+AKε, AK(X) = −∇X(K(ε, ε)) = −2K(∇Xε, ε).

Theorem 7. If dimK1̄ > 16, then (M, g, F ) is locally homogeneous.

Proof. (M, g, F ) is locally homogeneous if and only if the evalutation K0̄ →evx

TxM is surjective for all x ∈M .

Claim 1. [K1̄,K1̄]→evx Tx is surjective.

In other words if S′ ⊂ S with dimS′ > 16 then [S′, S′] = V . If this is not
true then there exists nonzero v ∈ V such that v ⊥ [S′, S′], i.e.

0 = η(v, [s1, s2]) = 〈s1, v · s2〉 ⇒ v|S′ : S′ → (S′)⊥

Now dim(S′)⊥ < 16, hence v· has a kernel and v is lightlike. Thus [S′, S′] is a
vector space consisting of lightlike vectors and dim([S′, S′])⊥ = 1 and generated
by v. Fact: Dirac current [s, s] is causal (lightlike or timelike). Thus [s1, s2] ⊂
Rv ⇒ [S′, S′] ⊂ Rv, a contradiction.

Theorem 8 (FOF, S). : K = K0̄ ⊕ K1̄ is a filtered subdeformation of the
Poincare supealgebra P .

Proof. “Killing supertransport”.

F = F0̄ ⊕ F1̄

F0̄ = TM ⊕ so(TM)

F1̄ = S(M)

DX(ξ, A, ε) = (∇Xξ +A(X),∇XA−R(X, ξ), DXε)

So that
K ' {D parallel spinors on E}

We then localize at x ∈M and track back Lie brackets on h⊕ S′ ⊕ V ′, where

h = {ξ ∈ K0̄|ξ|x = 0}
S′ = {ε|x where ε ∈ K1̄}
V ′ = {ξ|x where ξ ∈ K0̄} ⊂ S
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We get the bracket deformations

[A,B] = AB −BA
[A, s] = As

[v, s] = β(v, s) ∈ S′

[A, v] = Av + δ(A, v)

[s, s] = K(s, s) + γ(s, s)

[v, w] = α(v, w) + ρ(v, w)

Where δ, γ, ρ go to h and β goes to S′, α goes to V ′, and α, δ, ρ are as in classical
case.

β(v, s) = βϕ(v, s) +Xv(s)

γ(s, s) = γϕ(s, s)−XK(s,s)

βϕ(v, s) =
1

24
(v · ϕ− 3ϕ · v) · s

γϕ(s, s)(v) = −2K(βϕ(v, s), s)

ϕ = F |x ∈ Λ4V ∗

X : V ′ → so(V )

Section of the splitting of Killing vector fields

Theorem 9. (FOF,S): Let (M11, g, F ) be a a Lorentzian spin manifold with
closed F ∈ Ω4(M). If dimK1̄ > 16 then the Einstein and Maxwell equations
are unconditionally satisfied.

Proof. Sketch of proof: Let ε ∈ Γ(S(M)) and define forms:

ω(1)(X) = 〈ε,X · ε〉
ω(2)(X,Y ) = 〈ε, (X ∧ Y ) · ε〉
ω(5)(X1, . . . , X5) = 〈ε, (X1 ∧ · · · ∧X5) · ε〉

Nontrivial facts: If Dε = 0, then K = K(ε, ε)

• dω(2) = −iKF

• dω(5) = iK ∗ F − ω(2) ∧ F

Let us compute.

0 = ∗LKF = LK ∗ F = di|K ∗ F + iKd ∗ F = d(ω(2) ∧ F ) + iKd ∗ F =

= −1

2
iK(F ∧ F ) + iKd ∗ F = iK(d ∗ F − 1

2
F ∧ F )
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Thus if dimK1̄ > 16 then the Maxwell equation holds. Remember now that the
Jacobi identity is given.

Ric(v,K(s, s)) =
1

2
F 2
abv

a(eb · s, s) +
1

6
||F ||2〈v · s, s〉+

1

6
〈(v ∧ F ∧ F + 2ivdF − v ∧ dF ) · s, s〉

Einstein equation is unconditionally satisfied.
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