Program for the course "Dynamical Systems" (Lecturer Boris Kruglikov)

1. Introduction to the course. Actions of groups G. Examples of discrete dynamics. Actions of the group of reals $G = \mathbb{R}$. Vector fields v. Cauchy theorem on existence and uniqueness in ODE $\dot{x} = v(x), x \in U \subset \mathbb{R}^n$. Flows $\varphi(t, x)$, critical points and phase portraits on the example of ideal pendulum equation and its approximations. Integrals F of ODE.

- 2. Liapunov and asymptotically stable solutions. Study of the stability of any solution is equivalent to the study of stability for a critical point of ODE. Structure of solutions of linear ODE $\dot{x} = Ax$ and criterium of stability. Liapunov theorem on the stability of nonlinear equations by the first approximation $\dot{x} = Ax + \alpha(x)$, $||\alpha|| = o(||x||)$, $x \in \mathbb{R}^n$.
- 3. Floquet theory of linear ODE with periodic coefficients $x = A(t)x, x \in S^1$. Stability in terms of the Floquet multipliers μ_i . Problem of linearization.
- 4. Connection between discrete and continuous dynamics: time *t*-maps, first return maps, suspensions.
- 5. Some general properties of dynamical systems: Periodicity of trajectories, Dense orbits, Minimal dynamical systems, Topological mixing, Structural stability.
- 6. Continuous time dynamical systems: Linear flows on tori T^n , Gradient flows $v = \operatorname{grad}_S F$ on hypersurfaces in Euclidean space $S \subset \mathbb{R}^{n+1}$, Hamiltonian systems (skew-gradient flows) in \mathbb{R}^{2n} . Action of \mathbb{R}^n on the phase space of integrable Hamiltonian systems. Liouville theorem on integrable Hamiltonian systems $v = \operatorname{sgrad}_{\Omega} F$. Stability of the minimax critical points and minimax periodic trajectories.
- 7. Discrete time dynamical systems: Rotations of the circle S^1 , Shifts of the tori T^n , Expanding mappings $E_m : S^1 \to S^1$, Hyperbolic maps of tori $T^2 \to T^2$, Symbolic dynamics on Ω_N , Topological Markov chains σ_A , Smale horseshoe.
- 8. Invariants: Exponential growth of the periodic points number p(f), zeta-function $\varsigma_f(z)$ and topological entropy $h_{top}(f)$.
- 9. Calculations of the invariants of dynamical systems for our examples.
- 10. The concept of conjugation. Conjugation of discrete and smooth dynamical systems. Topological and differentiable conjugations.

- 11. Conjugation of the diffeomorphisms of the circle S^1 . Rotation number μ . Denjoy theorem. Consequence for the flows on tori.
- 12. Conjugation and the semi-local analysis: Coding, Cantor sets and expanding mappings of the circle of degree k.
- 13. Conjugation of the critical points to their linearizations: Theorems of Poincare (formal and analytic), Grobman-Hartman (C^0) and Sternberg (C^k, C^{∞}) . Invariant manifolds for maps and flows. Stable and unstable manifolds W^s , W^u of the critical point. Stable manifold theorem.
- 14. ω and α -limit sets. Foliation of these sets by the solutions. Particular cases: Critical points and Periodic trajectories. Limit cycles. Poincare-Benedixon theorem.
- 15. Two-dimensional dynamics (M^2, v) . Homoclinical points. Bifurcations of the phase portraits. Problem of conjugation.
- 16. Conclusion: Some words about chaos, perturbation theory, asymptotic decomposition and holomorphic dynamics.
 - * This program is intended but is not final, some changes can appear during the course.