MAT-3110: Differential Geometry – 1

Theoretical questions:

- Manifolds: Definition (charts, atlas). Examples $(S^n, \mathbb{R}P^n, \mathbb{C}P^n)$.
- Smooth maps $F: M \rightarrow N$ and diffeomorphisms. Local coordinates.
- Category of smooth manifolds. Morphisms $C^{\infty}(M,N)$.
- Algebra $A = C^{\infty}(M)$. Induced morphism $F^*: C^{\infty}(N) \to C^{\infty}(M)$. Algebraization functor (contravariant) to the category of commutative algebras. Que: I^* ?
- Points and ideals. Maximal ideal m_x (exact 3-sequence). Spec(A) and Gelfand thm.
- Space of jets $J_{x}^{k}(M)$. Structure of commutative algebra. Induced map $[F]_{x}^{k}: J_{y}^{k}(N) \rightarrow J_{x}^{k}(M), y = F(x)$.
- Jet-spaces, projections $\pi_{k,k-1}: J^k M \rightarrow J^{k-1} M$ and the corresponding exact 3-sequence.
- Hadamard's lemma. Equivalence of 2 descriptions of m_x^k algebraic and via Taylor-Maclaurin series.
- Cotangent T_x^*M and tangent T_xM spaces via jets. Differential $d_xF:T_xM \rightarrow T_yN$. (to defs dual to d_x^*F and via velocities of curves). Relation to the Jacobian J(F).
- Lie groups and algebras. Examples: $GL(n, \mathbf{R})$, $SL(n, \mathbf{R})$, SO(n), $GL(n, \mathbf{C})$, U(n).
- Lie algebras general definition. Tangent space $g=T_eG$. Exponential map. Calculation of Lie algebras of the above Lie groups.
- Vector fields $\mathcal{D}(M)$. Structure of *A*-module and of (infinite-dim) Lie algebra.
- Trajectories of vector fields (flow). Relation to ODEs (loc.coordinates).
- Lie derivative L_X action on functions, vector fields, differential forms. Properties of L_X .
- Differential *1*-forms. Expression in local coordinates. Pairings with vector fields.
- Differential *k*-forms and de Rham differential *d* (for *1*-forms relation to *Hess(f)*). Properties of *d* and de Rham complex.
- Tensors: algebraic theory. Categorical approach and universal property. Symmetric and skew-symmetric tensor products.
- Spaces $T^k V$, $T^k V^*$, $S^k V$, $\Lambda^k V$ and their dimensions. Tensor algebras.
- Decomposition of a 2-tensor into symmetric and skew-symmetric parts.
- Decomposable *k*-forms. Cartan criterion for decomposability of a 2-form.
- Map $\Lambda^n F: \Lambda^n M \rightarrow \Lambda^n M$. Relation to the determinant.
- Evaluations in the tensor algebra. Inner derivation i_X .
- Derivations $\Delta: \Omega^k(M) \rightarrow \Omega^{k+\bar{l}}(M)$. Commutator of graded derivations.
- Infinitesimal Stokes formula. Application to symmetries X_f of $J^l(\mathbf{R}^n)$ with Cartan form $\omega = du p_i dx^i$ (contact structure).
- Cartan's formula for differential $d\omega$ of 1- and 2-forms.

Practice:

- Calculation of $d\omega$, $L_X \omega$, $i_X \omega$, $[\zeta, \eta]$ in concrete examples.
- Calculation of tensor, symmetric and wedge produces.
- Understanding symmetric and skew-symmetric products of linear operators.
- Ability to realize if a differential 2-form is decomposable, 1-form exact etc.