Simply-transitive $C R$ real hypersurfaces in \mathbb{C}^{3}

Dennis The

Department of Mathematics \& Statistics
UiT The Arctic University of Norway
(joint work with Boris Doubrov \& Joël Merker; arXiv:2010.06334)

October 14, 2020
Geometry \& Differential Equations Seminar
IMPAN, Warsaw

An equivalence problem

Up to local biholomorphism, classify all

 homogeneous real hypersurfaces $M^{2 n+1} \subset \mathbb{C}^{n+1}$.Symmetry: we have the real Lie algebra $\mathfrak{h o l}(M)=\left\{X\right.$ hol. v.f. on $\mathbb{C}^{n+1}:\left.(X+\bar{X})\right|_{M}$ tangent to $\left.M\right\}$.

If $\forall p \in M$, the evaluation map $\mathfrak{h o l}(M) \rightarrow T_{p} M,\left.\quad X \mapsto(X+\bar{X})\right|_{p}$ is surjective, then M is (holomorphically) homogeneous.

- multiply-transitive (MT): hom. \& $\operatorname{dim}(M)<\operatorname{dim} \mathfrak{h o l}(M)$.
- simply-transitive (ST) : hom. $\& \operatorname{dim}(M)=\operatorname{dim} \mathfrak{h o l}(M)$.

Our focus: simply-transitive, 'Levi non-degenerate' $M^{5} \subset \mathbb{C}^{3}$

Examples: Tubes

Given a real hypersurface $\mathcal{S}^{n}=\{x: \mathcal{F}(x)=0\} \subset \mathbb{R}^{n+1}$ ('base'), its associated tubular CR hypersurface (or 'tube') is:
$M_{\mathcal{S}}^{2 n+1}=\mathcal{S}+i \mathbb{R}^{n+1}:=\{z: \mathcal{F}(\mathfrak{R e} z)=0\} \subset \mathbb{C}^{n+1}, \quad \operatorname{dim}_{\mathbb{R}} M_{\mathcal{S}}=2 n+1$.

- Always: $i \partial_{z_{1}}, \ldots, i \partial_{z_{n+1}} \in \mathfrak{h o l}\left(M_{\mathcal{S}}\right)$.
- If $\mathbf{S}=\left(A_{k \ell} x_{\ell}+b_{k}\right) \partial_{x_{k}} \in \mathfrak{a f f}(\mathcal{S})$ is a (real) affine symmetry of \mathcal{S}, then $\mathbf{S}^{\mathrm{cr}}:=\left(A_{k \ell} z_{\ell}+b_{k}\right) \partial_{z_{k}} \in \mathfrak{h o l}\left(M_{\mathcal{S}}\right)$.
- If \mathcal{S} is affinely homogeneous, then $M_{\mathcal{S}}$ is homogeneous.

Example ($\mathcal{S}^{2} \subset \mathbb{R}^{3}$ affinely hom., $M_{\mathcal{S}}^{5} \subset \mathbb{C}^{3}$ simply-transitive)
$\mathcal{S}: u=x_{1} \ln x_{2}, \mathfrak{a f f}(\mathcal{S})=\left\langle x_{1} \partial_{x_{1}}+u \partial_{u}, x_{2} \partial_{x_{2}}+x_{1} \partial_{u}\right\rangle$,
$\mathfrak{h o l}\left(M_{\mathcal{S}}\right)=\left\langle i \partial_{z_{1}}, i \partial_{z_{2}}, i \partial_{w}, z_{1} \partial_{z_{1}}+w \partial_{w}, z_{2} \partial_{z_{2}}+z_{1} \partial_{w}\right\rangle$.
Example ($\mathcal{S}^{2} \subset \mathbb{R}^{3}$ affinely inhom., $M_{\mathcal{S}}^{5} \subset \mathbb{C}^{3}$ multiply-transitive)
$\mathcal{S}: u=x_{1} x_{2}+x_{1}^{3} \ln \left(x_{1}\right), \mathfrak{a f f}(\mathcal{S})=\left\langle\partial_{x_{2}}+x_{1} \partial_{u}\right\rangle, \mathfrak{h o l}\left(M_{\mathcal{S}}\right)=\left\langle i \partial_{z_{1}}, i \partial_{z_{2}}, i \partial_{w}\right.$,
$\left.\partial_{z_{2}}+z_{1} \partial_{w}, \quad i z_{1} \partial_{z_{2}}+i \frac{z_{1}^{2}}{2} \partial_{w}, \quad z_{1} \partial_{z_{1}}+\left(2 z_{2}-\frac{3}{2} z_{1}^{2}\right) \partial_{z_{2}}+\left(3 w-\frac{1}{2} z_{1}^{3}\right) \partial_{w}\right\rangle$.

CR structure and its Levi form

$M^{2 n+1} \subset \mathbb{C}^{n+1}$ inherits a (integrable) $C R$ structure (M, C, J) :

- $C:=T M \cap J(T M), J^{2}=-1 ; n=\mathrm{rk}_{\mathbb{C}} C=$ CR-dim of M.
- $C^{\mathbb{C}}=C^{1,0} \oplus C^{0,1}$. These $\pm i$ eigenspaces for J are integrable.

Levi form (on $C^{0,1}$): $\mathcal{L}(\xi, \eta)=[\xi, \bar{\eta}] \bmod \mathcal{C}^{\mathbb{C}}$. (Want 'ndg'.)

	$M^{3} \subset \mathbb{C}^{2}$	$M^{5} \subset \mathbb{C}^{3}$
max sym	8	15
submax sym	3	$\begin{cases}8, & \text { Levi indefinite } \\ 7, & \text { Levi definite }\end{cases}$

(See Kruglikov (2015) for symmetry gaps for higher dim CR.)

Example ($M^{5} \subset \mathbb{C}^{3}$)

Hyperquadric $\mathfrak{I m}(w)=\left|z_{1}\right|^{2} \pm\left|z_{2}\right|^{2}$ (15-dim sym);
Winkelmann hypersurface: $\mathfrak{I m}\left(w+\overline{z_{1}} z_{2}\right)=\left|z_{1}\right|^{4}$ (8-dim sym).
These are tubular, i.e. equivalent to tubes on $u=x_{1}^{2}+x_{2}^{2}, u=x_{1} x_{2}$, and $u=x_{1} x_{2}+x_{1}^{4}$ respectively.

Historical Summary

- Poincaré (1907): Not all $M^{3} \subset \mathbb{C}^{2}$ are locally equivalent.
- Cartan (1932): Classified all homogeneous $M^{3} \subset \mathbb{C}^{2}$.
- Cartan (1935): Bounded homogeneous domains $D \subset \mathbb{C}^{k}$:
- $k=2$: are Hermitian symmetric spaces. Equivalent to either $\left|z_{1}\right|<1,\left|z_{2}\right|<1$ or $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<1$.
- $k=3$: announced to be Hermitian symmetric. Apparently, proof was long and he decided not to publish it. Investigating multiply-transitive $M^{5}=\partial D \subset \mathbb{C}^{3}$ is an ingredient.
- Piatetski-Shapiro (1959): \exists bounded homogeneous domain in \mathbb{C}^{k} for $k \geq 4$ that are not Hermitian symmetric.
- Loboda (2000-2003): Most of the MT, Levi ndg case settled. Incomplete: 6-dim Levi indefinite case.
- Fels-Kaup (2008): Levi rank 1 \& 2-ndg. All hom. models are tubular.
- Doubrov-Medvedev-T. (2017): All MT, Levi ndg.
- Kossovskiy-Loboda (2019): ST, Levi definite. All tubular.
- Loboda et al. (2019-2020): ST, Levi indefinite. Two non-tubular models.
- Doubrov-Merker-T. (2020): All ST, Levi ndg. (Independent approach.)

Multiply-transitive, Levi non-degenerate M^{5}

Theorem (Doubrov-Medvedev-T. 2017)

Any multiply-transitive Levi non-degenerate hypersurface $M^{5} \subset \mathbb{C}^{3}$ is locally biholomorphically equivalent to:
(1) Hyperquadric $\mathfrak{I m}(w)=\left|z_{1}\right|^{2} \pm\left|z_{2}\right|^{2}$ (15-dim sym);
(2) A tube (extensive list ${ }^{a} ; 6,7$, or 8 -dim sym);
(3) Cartan hypersurfaces $(\mathfrak{s o}(4), \mathfrak{s o}(1,3), \mathfrak{s o}(2,2)$ sym) or a related quaternionic model ($\mathfrak{s o}^{*}$ (4) sym);
(4) hypersurface of Winkelmann type with 6-dim sym.
${ }^{a}$ Base may be affinely inhomogeneous!

Strategy:

- Study 'complexified' CR str. ('ILC' str. / PDE) via Cartan reduction.
- Classify CR real forms.
- Recognize most tubes via classification of affinely hom. surfaces $\mathcal{S}^{2} \subset \mathbb{R}^{3}$, see Doubrov-Komrakov-Rabinovitch (1995) \& Eastwood-Ezhov (1999).

The simply-transitive classification

Theorem (Loboda et al. 2019-2020 \& Doubrov-Merker-T. 2020)

Any simply-transitive Levi non-degenerate hypersurface $M^{5} \subset \mathbb{C}^{3}$ is locally biholomorphically equivalent to precisely one of:
(1) Either one hypersurface among the 6 families of tubes with affinely simply-transitive base (for $\alpha, \beta \in \mathbb{R}$ and $\epsilon= \pm 1$):

T1	$u=x_{1}^{\alpha} x_{2}^{\beta}$	$\alpha \beta(1-\alpha-\beta) \neq 0$, $(\alpha, \beta) \neq(1,1),(1,-1),(-1,1)$ Redundancy: $(\alpha, \beta) \sim(\beta, \alpha) \sim\left(\frac{1}{\alpha},-\frac{\beta}{\alpha}\right)$
T2	$u=\left(x_{1}^{2}+x_{2}^{2}\right)^{\alpha} \exp \left(\beta \arctan \left(\frac{x_{2}}{x_{1}}\right)\right)$	$\alpha \neq \frac{1}{2} ;(\alpha, \beta) \neq(0,0),(1,0)$ Redundancy: $(\alpha, \beta) \sim(\alpha,-\beta)$
T3	$u=x_{1}\left(\alpha \ln \left(x_{1}\right)+\ln \left(x_{2}\right)\right)$	$\alpha \neq-1$
T4	$\left(u-x_{1} x_{2}+\frac{x_{1}^{3}}{3}\right)^{2}=\alpha\left(x_{2}-\frac{x_{1}^{2}}{2}\right)^{3}$	$\alpha \neq 0,-\frac{8}{9}$
T5	$x_{1} u=x_{2}^{2}+\epsilon x_{1}^{\alpha}$	$\alpha \neq 0,1,2$
T6	$x_{1} u=x_{2}^{2}+\epsilon x_{1}^{2} \ln \left(x_{1}\right)$	-

(2) $\mathfrak{I m}(w)=\left|\mathfrak{I m}\left(z_{2}\right)-w \mathfrak{I m}\left(z_{1}\right)\right|^{2}$. (Levi indefinite, non-tubular, symmetry $\mathfrak{s a f f}(2, \mathbb{R}):=\mathfrak{s l}(2, \mathbb{R}) \ltimes \mathbb{R}^{2}$.)

Loboda (2020): Another ST (non-tube) model. (False: it's intransitive.)

Segré varieties

If $M^{2 n+1}=\{z: \Phi(z, \bar{z})=0\} \subset \mathbb{C}^{n+1}$, define its 'complexification' $M^{c}:=\{(z, a): \Phi(z, a)=0\} \subset \mathbb{C}^{n+1} \times \mathbb{C}^{n+1}$ (or 'Segré variety'). We have $M=$ fixed-point set of $\tau(z, a)=(\bar{a}, \bar{z})$ restricted to M^{c}.

This induces rank n distributions $E=\operatorname{ker}\left(d \pi_{2}\right)$ and $F=\operatorname{ker}\left(d \pi_{1}\right)$. Let $\operatorname{sym}\left(M^{c}\right)=\left\{X=\xi^{k}(z) \partial_{z_{k}}+\sigma^{k}(a) \partial_{a_{k}}: X\right.$ tangent to $\left.M^{c}\right\}$.

Example $\left(\mathcal{S}: u=x_{1} \ln x_{2}\right)$

$$
\begin{aligned}
\mathfrak{h o l}\left(M_{\mathcal{S}}\right)= & \left\langle i \partial_{z_{1}}, i \partial_{z_{2}}, i \partial_{w}, z_{1} \partial_{z_{1}}+w \partial_{w}, z_{2} \partial_{z_{2}}+z_{1} \partial_{w}\right\rangle \\
\operatorname{sym}\left(M_{\mathcal{S}}^{c}\right)= & \left\langle\partial_{z_{1}}-\partial_{a_{1}}, \partial_{z_{2}}-\partial_{a_{2}}, \partial_{w}-\partial_{c}\right. \\
& \left.z_{1} \partial_{z_{1}}+w \partial_{w}+a_{1} \partial_{a_{1}}+c \partial_{c}, z_{2} \partial_{z_{2}}+z_{1} \partial_{w}+a_{2} \partial_{a_{2}}+a_{1} \partial_{c}\right\rangle .
\end{aligned}
$$

We always have $\operatorname{dim}_{\mathbb{R}} \mathfrak{h o l}(M)=\operatorname{dim}_{\mathbb{C}} \operatorname{sym}\left(M^{c}\right)$.

ILC structures \& PDE

Definition

A Legendrian contact (LC) structure is a complex contact manifold (N, C) with $C=E \oplus F$ where E, F are maximally isotropic. If one or both of E, F are integrable, it is SILC or ILC respectively.

Example

For $M \subset \mathbb{C}^{n+1}$ as before, $\left(M^{c} ; E, F\right)$ is an ILC structure.
Locally, $C=\{\sigma=0\}, \eta=\left.d \sigma\right|_{C}$ ndg. $\exists\left(z^{j}, w, w_{j}\right)$ with $\sigma=d w-w_{j} d z^{j}$. If F is integ., we may assume $F=\left\langle\partial_{w_{j}}\right\rangle$, so

$$
E=\left\langle\mathcal{D}_{j}:=\partial_{z^{j}}+w_{j} \partial_{w}+f_{j k} \partial_{w_{k}}\right\rangle, \quad \exists f_{j k}=f_{k j} .
$$

Equivalently, we have a complete 2nd order PDE system $\frac{\partial^{2} w}{\partial z_{j} \partial z_{k}}=f_{j k}\left(z^{\ell}, w, w_{\ell}\right)$, considered up to point transformations.

M^{c} and the PDE solution spaces

PDE compatibility \Leftrightarrow integrability of E.

In fact, $M^{c}=\{(z, a): \Phi(z, a)=0\}$ is the solution space of a 2 nd order PDE system. How to find it?
(1) Regard $w:=z_{n+1}$ as a function of $\left(z_{1}, \ldots, z_{n}\right)$, treat $a \in \mathbb{C}^{n+1}$ as parameters.
(2) Find $w_{j}:=\frac{\partial w}{\partial z_{j}}$. Solve for a in terms of $\left(w, w_{1}, \ldots, w_{n}\right)$.
(3) Find $w_{j k}:=\frac{\partial^{2} w}{\partial z_{j} \partial z_{k}}$ and sub. in a.

Example ($\mathcal{S}: u=x_{1} \ln x_{2}$)

$$
\begin{aligned}
& M_{\mathcal{S}}: \mathfrak{R e}(w)=\mathfrak{R e}\left(z_{1}\right) \ln \mathfrak{R e}\left(z_{2}\right), \quad M_{\mathcal{S}}^{c}: \frac{w+c}{2}=\left(\frac{z_{1}+a_{1}}{2}\right) \ln \left(\frac{z_{2}+a_{2}}{2}\right) \\
& \Rightarrow\left(w_{1}, w_{2}, w_{11}, w_{12}, w_{22}\right)=\left(\ln \left(\frac{z_{2}+a_{2}}{2}\right), \frac{z_{1}+a_{1}}{z_{2}+a_{2}}, 0, \frac{1}{z_{2}+a_{2}},-\frac{z_{1}+a_{1}}{\left(z_{2}+a_{2}\right)^{2}}\right) . \\
& \Rightarrow w_{11}=0, \quad w_{12}=\frac{1}{2} e^{-w_{1}}, \quad w_{22}=-\frac{1}{2} w_{2} e^{-w_{1}} .
\end{aligned}
$$

Simply-transitive classification strategy - 1

Hom. ILC $(G / K ; E, F) \leftrightarrow \operatorname{ILC}$ quadruple $(\mathfrak{g}, \mathfrak{k} ; \mathfrak{e}, \mathfrak{f})$. When $\mathfrak{k}=0$:

Definition (ILC triple \& ASD-ILC triple)

Let $\operatorname{dim} \mathfrak{g}=2 n+1$. An ILC triple $(\mathfrak{g} ; \mathfrak{e}, \mathfrak{f})$ consists of n-dim subalgs $\mathfrak{e}, \mathfrak{f} \subset \mathfrak{g}$ s.t. $C=\mathfrak{e} \oplus \mathfrak{f}$ is $n d g$, i.e. $\eta(x, y)=[x, y] \bmod C$ is $n d g$ on C. An ILC triple $(\mathfrak{g} ; \mathfrak{e}, \mathfrak{f})$ is ASD if \exists anti-involution τ of \mathfrak{g} that swaps \mathfrak{e} and \mathfrak{f}.

Want: ASD-ILC triples $(\mathfrak{g} ; \mathfrak{e}, \mathfrak{f})$ with $5=\operatorname{dim}(\mathfrak{g})=\operatorname{dim} \operatorname{sym}_{\text {ILC }}(\mathfrak{g} ; \mathfrak{e}, \mathfrak{f})$.
How to tell if symmetry jumps up? i.e. $\operatorname{dim} \operatorname{sym}_{\text {ILC }}(\mathfrak{g} ; \mathfrak{e}, \mathfrak{f})>\operatorname{dim}(\mathfrak{g})=5$.
(1) Find embedding of $(\mathfrak{g} ; \mathfrak{e}, \mathfrak{f})$ into $(\widetilde{\mathfrak{g}}, \widetilde{\mathfrak{k}} ; \widetilde{\mathfrak{e}}, \widetilde{\mathfrak{f}})$, where $\widetilde{\mathfrak{k}} \neq 0$.
(2) New coord-indep. formula for fundamental quartic \mathcal{Q}_{4}. Moreover,

\mathcal{Q}_{4} root type	O	N	D	III	II	I
max sym	15	8	7	6	5	5

(3) Direct computation via two methods: PDE syms or power series.

Simply-transitive classification strategy - 2

Kossovskiy-Loboda (2019): In the Levi-definite case, if 5-dim $\mathfrak{h o l}(M)$ contains a 3-dim abelian ideal, then M is a tube over an affinely hom. base \mathcal{S}. (Proof does not extend to indefinite case.)

Let \mathfrak{g} be a complex 5-dim Lie alg. Want: ASD-ILC triples ($\mathfrak{g} ; \mathfrak{e}, \mathfrak{f}$) with admissible τ and $\operatorname{dim} \operatorname{sym}_{\text {ILC }}(\mathfrak{g} ; \mathfrak{e}, \mathfrak{f})=5$. Overview:
(1) \mathfrak{g} has no 3-dim abelian ideal: \exists ! model.
(2) \mathfrak{g} has a 3-dim abelian ideal \mathfrak{a} :
(a) $\mathfrak{a} \neq \tau(\mathfrak{a}): \nexists$ models.
(b) $\mathfrak{a}=\tau(\mathfrak{a})$:

- $\mathfrak{e} \cap \mathfrak{a} \neq 0$ (or $\mathfrak{f} \cap \mathfrak{a} \neq 0$): \nexists models.
- $\mathfrak{e} \cap \mathfrak{a}=\mathfrak{f} \cap \mathfrak{a}=0$: All must be tubes on affinely hom. $\mathcal{S}^{2} \subset \mathbb{R}^{3}$.

Tube strategy: From DKR list, remove \mathcal{S} with MT $M_{\mathcal{S}}$ \& restrict to affinely ST \mathcal{S} with ndg Hessians. Get tube list in Main Thm as a candidate list. Need to test for symmetry jumps.

The fundamental quartic \mathcal{Q}_{4}

All 5-dim LC structures admit a fundamental curvature invariant that is a binary quartic field. (Typically computed via Chern-Moser normal form or via PDE realization.) Geometric interpretation?

Key idea: Lift $\left(N^{5} ; E, F\right)$ to a \mathbb{P}^{1}-bundle $\widetilde{N}^{6} \rightarrow N^{5}$.

$$
\widetilde{N}_{x}:=\left\{\left(\ell_{E}, \ell_{F}\right) \in \mathbb{P}\left(E_{x}\right) \times \mathbb{P}\left(F_{x}\right): \eta\left(\ell_{E}, \ell_{F}\right)=0\right\}
$$

(In fact, $\ell_{F}=F \cap\left(\ell_{E}\right)^{\perp_{\eta}}$, so $\widetilde{N} \rightarrow N$ is a \mathbb{P}^{1}-bundle.) On \widetilde{N} :
(i) rank 1: $V=\operatorname{ker}\left(\pi_{*}\right)$;
(ii) rank 3: $\left.\underset{\sim}{D}\right|_{\tilde{x}}:=\left(\pi_{*}\right)^{-1}\left(\ell_{E} \oplus \ell_{F}\right)$ for $\widetilde{x}=\left(\ell_{E}, \ell_{F}\right)$;
(iii) rank 5: $\widetilde{C}:=\left(\pi_{*}\right)^{-1} C$ for $C=E \oplus F$.

Indeed, we get an instance of a Borel geometry $\left(R^{6}, D\right)$:

- weak derived flag $D \subset D^{2} \subset D^{3}=T R$ has growth (3,5,6).
- symbol algebra modelled on $\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 \\ * & * & 0 & 0 \\ * & * & * & 0\end{array}\right) \subset \mathfrak{s l}(4)$.

Geometric interpretation of \mathcal{Q}_{4}

Proposition

Given any Borel geometry $\left(R^{6}, D\right)$, we canonically have:
(a) rk 2: $\sqrt{D} \subset D$ satisfying $[\sqrt{D}, \sqrt{D}] \equiv 0 \bmod D$.
(b) rk 1: $V=\left\{X \in D:\left[X, D^{2}\right] \subset D^{2}\right\}$. Have $D=V \oplus \sqrt{D}$.
(c) $\sqrt{D}=L_{1} \oplus L_{2}$ (unique up to ordering) into null lines L_{1}, L_{2} for a ndg conformal symmetric bilinear form on \sqrt{D}.

Corollary

The map $\Gamma\left(L_{1}\right) \times \Gamma\left(L_{2}\right) \rightarrow \Gamma(V),(X, Y) \mapsto \operatorname{proj}_{V}([X, Y])$ is tensorial, so determines a vector bundle map $\Phi: L_{1} \otimes L_{2} \rightarrow V$. Geometrically, Φ obstructs Frobenius-integrability of \sqrt{D}.

For LC str. on N, Φ on \widetilde{N} is a quartic tensor field $\mathcal{Q}_{4}(t)$ wrt affine coord t on \mathbb{P}^{1}. Homog. cases are easily computed in terms of algebraic data.

Abstract realization of the exceptional model

Proposition

Any 5-dimensional complex Lie algebra \mathfrak{g} without 3-dimensional abelian ideals is isomorphic to one of:

- $\mathfrak{s l}(2, \mathbb{C}) \times \mathbb{C}^{2}$;
- $\mathfrak{s a f f}(2, \mathbb{C}):=\mathfrak{s l}(2, \mathbb{C}) \ltimes \mathbb{C}^{2}$;
- $\mathfrak{s l}(2, \mathbb{C}) \times \mathfrak{r}_{2}$;
- upper-triangular matrices in $\mathfrak{s l}(3, \mathbb{C})$.

Proof is indep. of Mubarakzyanov classification of 5-dim (real) Lie alg.

Theorem

For list above, only $\mathfrak{g}=\mathfrak{s a f f}(2, \mathbb{C})$ supports an ASD-ILC triple $(\mathfrak{g} ; \mathfrak{e}, \mathfrak{f})$ with $\operatorname{dim} \operatorname{sym}_{\mathrm{ILC}}(\mathfrak{g} ; \mathfrak{e}, \mathfrak{f})=5$. Up to $\operatorname{Aut}(\mathfrak{g})$-equivalence, $(\mathfrak{g} ; \mathfrak{e}, \mathfrak{f})$ is unique and admits a unique admissible anti-involution τ.

Wrt 'usual' basis $H, X, Y, v_{1}, v_{2}: \quad \mathfrak{e}=\left\langle H+v_{1}, X\right\rangle, \quad \mathfrak{f}=\left\langle H-v_{2}, Y\right\rangle$ (\mathcal{Q}_{4} has root type I), and $\left(H, X, Y, v_{1}, v_{2}\right) \stackrel{\tau}{\longmapsto}\left(-H, Y, X, v_{2}, v_{1}\right)$.

Derivation of the exceptional model

Std. action of $\mathfrak{g}=\mathfrak{s a f f}(2, \mathbb{C})$ on $\mathbb{C}^{2}=J^{0}(\mathbb{C}, \mathbb{C})$:

$$
H=z_{1} \partial_{z_{1}}-z_{2} \partial_{z_{2}}, \quad X=z_{1} \partial_{z_{2}}, \quad Y=z_{2} \partial_{z_{1}}, \quad v_{1}=\partial_{z_{1}}, \quad v_{2}=\partial_{z_{2}} .
$$

Prolong these to $J^{1}(\mathbb{C}, \mathbb{C})$, i.e. $\left(z_{1}, z_{2}, w:=z_{2}^{\prime}\right)$-space. Induce the joint action on two copies of $J^{1}(\mathbb{C}, \mathbb{C})$, i.e. $\left(z_{1}, z_{2}, w, a_{1}, a_{2}, c\right)$-space.

$$
\begin{array}{ll}
H=z_{1} \partial_{z_{1}}-z_{2} \partial_{z_{2}}-2 w \partial_{w}+a_{1} \partial_{a_{1}}-a_{2} \partial_{a_{2}}-2 c \partial_{c}, \\
X=z_{1} \partial_{z_{2}}+\partial_{w}+a_{1} \partial_{a_{2}}+\partial_{c}, & v_{1}=\partial_{z_{1}}+\partial_{a_{1}}, \\
Y=z_{2} \partial_{z_{1}}-w^{2} \partial_{w}+a_{2} \partial_{a_{1}}-c^{2} \partial_{c}, & v_{2}=\partial_{z_{2}}+\partial_{a_{2}} .
\end{array}
$$

This prolonged \mathfrak{g}-action admits the joint differential invariant:

$$
\mathcal{A}:=\frac{\left(z_{2}-a_{2}-w\left(z_{1}-a_{1}\right)\right)\left(z_{2}-a_{2}-c\left(z_{1}-a_{1}\right)\right)}{2(w-c)} .
$$

Consider $\mathcal{A}=\lambda \in \mathbb{C}^{\times}$. Rescale variables to normalize λ to i. Intersect with the fixed-point set of $\left(z_{1}, z_{2}, w, a_{1}, a_{2}, c\right) \stackrel{\tau}{\mapsto}\left(\bar{a}_{1}, \bar{a}_{2}, \bar{c}, \bar{z}_{1}, \bar{z}_{2}, \bar{w}\right)$ to get the exceptional model $\mathfrak{I m}(w)=\left|\mathfrak{I m}\left(z_{2}\right)-w \mathfrak{I m}\left(z_{1}\right)\right|^{2}$.

Related real equi-affine geometry

$\operatorname{Fix}(x, y, u, a, b, c) \in \mathbb{R}^{6} \simeq_{\text {loc }} J^{1}(\mathbb{R}, \mathbb{R}) \times J^{1}(\mathbb{R}, \mathbb{R})$, define

$$
\mathcal{A}:=\frac{(y-b-u(x-a))(y-b-c(x-a))}{2(u-c)} .
$$

For $\mathcal{A} \in \mathbb{R}^{\times}$, this data determines a triangle in \mathbb{R}^{2} with area $|\mathcal{A}|$:

Setting $\mathcal{A}=\lambda \in \mathbb{R}^{\times}$defines a family of planar triangles that is invariant under the planar equi-affine group $\operatorname{SAff}(2, \mathbb{R})$.

Related real equi-affine geometry - 2

Recall: For any planar hyperbola \mathcal{H}, its 'asymptotes-parallelogram' has area $\operatorname{Area}(\mathcal{H})$ independent of $p \in \mathcal{H}$.

Fix \mathcal{A}. Any $(a, b, c) \in \mathbb{R}^{3} \simeq_{\text {loc }} J^{1}(\mathbb{R}, \mathbb{R})$ yields $p_{0}=(a, b) \in \mathbb{R}^{2}$ and a line L_{0} through it with slope c. Get a local foliation $\left\{\mathcal{H}: \operatorname{Area}(\mathcal{H})=|\mathcal{A}|, L_{0}\right.$ an asymptote for $\left.\mathcal{H}\right\}$. The collection of all such foliations is $\operatorname{SAff}(2, \mathbb{R})$-invariant.

Tubes

$$
\begin{gathered}
\text { Real affine hypersurface } \\
\mathcal{S}=\{x: \mathcal{F}(x)=0\} \subset \mathbb{R}^{n+1}, \quad d \mathcal{F} \neq 0 \text { on } \mathcal{S} ; \\
\text { Real affine symmetry } \mathbf{S}=\left(A_{k \ell} x_{\ell}+b_{k}\right) \partial_{x_{k}} \in \mathfrak{a f f}(\mathcal{S})
\end{gathered}
$$

Tubular CR hypersurface
$M_{\mathcal{S}}=\{z: \mathcal{F}(\mathfrak{R e z})=0\} \subset \mathbb{C}^{n+1} ;$
$i \partial_{z_{1}}, \ldots, i \partial_{z_{n+1}} \in \mathfrak{h o l}\left(M_{\mathcal{S}}\right)$,
$\mathbf{S}^{\text {cr }}:=\left(A_{k \ell} z_{\ell}+b_{k}\right) \partial_{z_{k}} \in \mathfrak{a f f}(\mathcal{S})^{\text {cr }}$

Tubular ILC hypersurface
$M_{\mathcal{S}}^{c}=\left\{(z, a): \mathcal{F}\left(\frac{z+a}{2}\right)=0\right\} \subset \mathbb{C}^{n+1} \times \mathbb{C}^{n+1} ;$
$\partial_{z_{1}}-\partial_{a_{1}}, \ldots, \partial_{z_{n+1}}-\partial_{a_{n+1}} \in \operatorname{sym}\left(M_{\mathcal{S}}^{c}\right)$,
$\mathbf{S}^{\text {lc }}:=\left(A_{k \ell} z_{\ell}+b_{k}\right) \partial_{z_{k}}+\left(A_{k \ell} a_{\ell}+b_{k}\right) \partial_{a_{k}} \in \mathfrak{a f f}(\mathcal{S})^{\text {lc }}$

Note that $\mathfrak{a}=\left\langle\partial_{z_{1}}-\partial_{\mathfrak{a}_{1}}, \ldots, \partial_{z_{n+1}}-\partial_{a_{n+1}}\right\rangle$ is transverse to the projections $\pi_{1}(z, a)=z$ and $\pi_{2}(z, a)=a$.

Abstract description of tubes

Given any affine hypersurface $\mathcal{S} \subset \mathbb{R}^{n+1}$ with homogeneous $\mathrm{CR} /$ ILC tubes $M_{\mathcal{S}}$ and $M_{\mathcal{S}}^{c}$, we get the following abstract structure:

Definition

A tubular CR realization for an ILC quadruple ($\mathfrak{g}, \mathfrak{k} ; \mathfrak{e}, \mathfrak{f})$ in dimension $\operatorname{dim}(\mathfrak{g} / \mathfrak{k})=2 n+1$ is a pair (\mathfrak{a}, τ), where
(T.1) $\mathfrak{a} \subset \mathfrak{g}$ is an ($n+1$)-dim abelian subalgebra;
(T.2) $\mathfrak{e} \cap \mathfrak{a}=\mathfrak{f} \cap \mathfrak{a}=0$.
(T.3) τ is an admissible anti-involution of $(\mathfrak{g}, \mathfrak{k} ; \mathfrak{e}, \mathfrak{f})$ that preserves \mathfrak{a}.

If \mathfrak{a} has normalizer $\mathfrak{n}(\mathfrak{a})$ in \mathfrak{g}, then $\mathfrak{n}(\mathfrak{a}) / \mathfrak{a} \cong \mathfrak{a f f}(\mathcal{S}) \otimes_{\mathbb{R}} \mathbb{C}$.

Theorem

If $M^{5} \subset \mathbb{C}^{3}$ is $S T$, Levi ndg with $\mathfrak{h o l}(M)$ containing a 3-dim abelian ideal, then $M \cong M_{\mathcal{S}}$ for some affinely $S T$ base $\mathcal{S} \subset \mathbb{R}^{3}$.

Affinely homogeneous hypersurfaces to ILC structures

Proposition

Let $\mathcal{S} \subset \mathbb{R}^{n+1}$ be an affinely hom. hypersurface with ndg 2nd fundamental form. Then $M_{\mathcal{S}}^{\mathcal{C}} \subset \mathbb{C}^{n+1} \times \mathbb{C}^{n+1}$ is homogeneous and encoded by an ILC quadruple $(\mathfrak{g}, \mathfrak{k} ; \mathfrak{e}, \mathfrak{f})$ given for any $p \in \mathcal{S}$ by

$$
\begin{aligned}
& \mathfrak{e}:=\mathfrak{a f f}(\mathcal{S}) \otimes_{\mathbb{R}} \mathbb{C}, \quad \mathfrak{g}:=\mathfrak{e} \ltimes \mathbb{C}^{n+1}, \\
& \mathfrak{f}:=\left\{Y \in \mathfrak{g}:\left.Y\right|_{p}=0\right\}, \quad \mathfrak{k}:=\mathfrak{e} \cap \mathfrak{f} .
\end{aligned}
$$

Thus, \mathcal{Q}_{4} can be efficiently computed for our tubes of study.
Example $\left(\mathcal{S}: u=x_{1}\left(\alpha \ln x_{1}+\ln x_{2}\right) ;\right.$ ndg: $\left.\alpha \neq-1 ; p=(1,1,0) \in \mathcal{S}\right)$
$\mathfrak{e}=\left\langle\widetilde{\mathbf{S}}:=x_{1} \partial_{x_{1}}-\alpha x_{2} \partial_{x_{2}}+u \partial_{u}, \mathbf{T}:=x_{2} \partial_{x_{2}}+x_{1} \partial_{u}\right\rangle, \quad[\mathbf{S}, \mathbf{T}]=0$
$\mathfrak{f}=\left\langle\widetilde{\mathbf{S}}:=\mathbf{S}-\partial_{x_{1}}+\alpha \partial_{x_{2}}, \widetilde{\mathbf{T}}:=\mathbf{T}-\partial_{x_{2}}-\partial_{u}\right\rangle$. We use this to calculate:

$$
\mathcal{Q}_{4}=-t^{4}-4 t^{3}-\frac{2(\alpha+3)}{\alpha+1} t^{2}-\frac{4}{\alpha+1} t-\frac{1}{(\alpha+1)^{2}} \Rightarrow \begin{cases}1: & \alpha \neq-1,0,8 ; \\ 1: & \alpha=8 ; \\ N: & \alpha=0\end{cases}
$$

Conclusion: Type I and II have 5-dim sym. For type N, use Maple on the PDE system $\left(w_{11}, w_{12}, w_{22}\right)=\left(0, \frac{1}{2} e^{-w_{1}},-\frac{1}{2} w_{2} e^{-w_{1}}\right)$.

Summary

The classification of homogeneous $M^{5} \subset \mathbb{C}^{3}$ branches as:
(1) $\mathbb{R} \times \mathbb{C} \times \mathbb{C}$ or $M^{5}=\mathcal{M}^{3} \times \mathbb{C}$, where $\mathcal{M}^{3} \subset \mathbb{C}^{2}$ is Levi ndg.
(2) Levi rank 1 \& 2-nondegenerate
(3) Levi non-degenerate (MT \& ST)

This classification is now complete.

- We used a Lie algebraic approach that circumvents normal forms, is independent of the Mubarakzyanov classification, and takes advantage of the close relationship to ILC structures.
- A key new tool is a coordinate-independent formula / geometric interpretation for the fundamental quartic \mathcal{Q}_{4}. (See Maple supplement in arXiv submission.)

