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C-class ODE

In a short paper in 1938, Cartan gave the following definition:

“A given class of ODE u("*Y) = f(t, u, ', ..., ul™) will be said
to be a C-class if there exists an infinite group (in the sense of
Lie) & transforming eqns of the class into eqns of the class
and such that the differential invariants with respect to & of
an eqn of the class be first integrals of the eqn.”
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C-class ODE

In a short paper in 1938, Cartan gave the following definition:

“A given class of ODE u("*Y) = f(t, u, ', ..., ul™) will be said
to be a C-class if there exists an infinite group (in the sense of
Lie) & transforming eqns of the class into eqns of the class
and such that the differential invariants with respect to & of
an eqn of the class be first integrals of the eqn.”

Here, & is a prescribed Lie transformation (pseudo-)group, e.g.
or . Moreover,
Cartan gave two examples of C-classes amongst:
@ scalar 3rd order ODE up to €
@ scalar 2nd order ODE up to P.
Other studies: Bryant (1991), Grossman (2000).

GOAL: Identify C-classes for higher-order ODE (up to €).
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Why study C-class ODE?

@ Various classes of ODE £ (up to &) admit an equiv. descrip.
via a canonical Cartan geometry (G — £,w) of type (G, P).
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Why study C-class ODE?

@ Various classes of ODE £ (up to &) admit an equiv. descrip.
via a canonical Cartan geometry (G — £,w) of type (G, P).

@ Canonical Cartan connections w are obtained using only linear
algebra and differentiation.

o Diff. inv. arise from the components of the curvature x of w
(and its covariant derivatives).

If all differential invariants are first integrals, and there are
sufficiently many of them, these can be used to solve the ODE, i.e.

Such generic C-class ODE can be solved w/o any integration.

N.B. Existence of Cartan connections is not guaranteed for arb. &.
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Some results

Consider (n + 1)-st order ODE on m > 1 dep. vars, up to €.
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Some results

Consider (n + 1)-st order ODE on m > 1 dep. vars, up to €.
@ m=1, n=1: no invariants
e m=1, n=2: scalar 3rd order ~» “parabolic geometry”

@ m>2, n=1: systems of 2nd order ~~» “parabolic geometry”

Let n,m > 1 except (n,m) = (1,1). If an ODE is Wilczynski-flat,
then it is of C-class.

The generalized Wilczynski invariants are defined via the
linearization of a given ODE.

An ODE with trivializable linearization is of C-class.

Rmk: Wilczynski-flat ODE inherit a natural geometric structure on
their soln space, e.g. conformal structure when (m, n) = (1, 2).
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A non-flat C-class example

Given a soln u, let a := ufln(z)l)' The linearization at v is:

fu[v] = V(n+1) — Mav(") ilazv(nfl) — 0
n n
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A non-flat C-class example

Given a soln u, let a := ufln(z)l)' The linearization at v is:

fu[v] = V(n+1) — Mav(") _ ilazv(nfl) — 0
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We have o' = ¥, s0 (3)/ =~ () = — % and ()= % Let

Vi= 5,50 vintl) — %Eu[v] =0, i.e. trivializable linearization.

Dennis The On C-class equations 5/18



A non-flat C-class example

Given a soln u, let a := ufln(z)l)' The linearization at v is:

fu[v] = V(n+1) — Mav(") ilazv(nfl) — 0
n n

2

We have & = £, s0 (1) = -1 (L) =-2 and (&)= 5. Let

Vi= 5,50 vintl) — %Eu[v] =0, i.e. trivializable linearization.

.. Given ODE is of C-class.
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Some non-flat C-class systems examples

Let u have m components. The following are C-class examples:

The equation for circles in Euclidean space

u” = 3u” <u/a u//>

is Wilczynski-flat (Medvedev 2011).

has trivializable linearization.
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From ODE to filtered manifolds

J"Y(R,R): (t, ug, Uy, Ua, ..., Uny1), contact system:

(dugp — wrdt, ..., dup— upy1dt).
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From ODE to filtered manifolds

J"Y(R,R): (t, ug, Uy, Ua, ..., Uny1), contact system:
(dugp — wrdt, ..., dup— upy1dt).

ODE € c J""Y(R,R), uny1 = f(t, uo, ..., us). Get rank 2
distribution D on &£ with a splitting D = E & F into line fields:

@ E is spanned by % =0t + 10y, + 20y, + ... + fO,,

e F is spanned by 0,,.
Weak der. flag: D=: T Cc T7?£ C ... C TE. Symbol alg. m:

[i,aum}:auf mod T (g

Splitting ~» Gg C Autg-(m). Get “filtered Go-structure of type m":

d

‘7\‘
8UO aul - 8’Jn—l 8'-’n
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Homogeneous models

The contact sym alg of u("*1) =0 (order > 4) leads to
G = GlLy x V,, where V,, 2 S"R?, and P = LT5 in red below.

X HI Y

PANN
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Homogeneous models

The contact sym alg of u("*1) =0 (order > 4) leads to
G = GlLy x V,, where V,, 2 S"R?, and P = LT5 in red below.

X HI Y

PANN

Special (parabolic) cases:

order = 3 order = 2 (point transf.)

g =5py g=sl3
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Cartan connections

A Cartan geometry (G — M, w) of type (G, P) consists of:
e (right) principal P-bundle G — M
@ Cartan connection w : TG — g, i.e.
e w,: T,G — gis a linear isomorphism, Yu € G,
o (rP)*w=Adp,-10w, Vpe P;

° w(ﬁ) = A VA€ p, where A, = %’ uexp(eA).

e=0
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A Cartan geometry (G — M, w) of type (G, P) consists of:
e (right) principal P-bundle G — M
@ Cartan connection w : TG — g, i.e.
e w,: T,G — gis a linear isomorphism, Yu € G,
o (rP)*w=Adp,-10w, Vpe P;
° w(ﬁ) = A VA€ p, where A, = %L:O uexp(eA).

Curvature: K = dw + 3[w,w] € Q%(G; g). This is and

completely obstructs flatness, i.e. local equiv to (G — G/P,wg).

Curv. fen: k: G — /\2(9/]3)* ® g, k(x,y) = K(w(x),w (y)).

e TM =G xp (g/p). P-inv. data on g/p ~~ geo. str. on TM.
@ Need normalization conditions on K to get an equivalence of

categories with underlying structures on M,
e.g. Riem. geom. <> Cartan geom. of type (E(n), O(n))

with im(k) € A*(g/p)* ® p (torsion-free).
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Descending to the solution space

Theorem (Doubrov, Komrakov, Morimoto 1999)

Canonical Cartan connections (G — £,w) of type (G, P) exist for:
© scalar ODE of order > 3 wrt &; order 2 wrt 3;
@ systems of ODE of order > 2 wrt L.
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Descending to the solution space

Theorem (Doubrov, Komrakov, Morimoto 1999)

Canonical Cartan connections (G — £,w) of type (G, P) exist for:
© scalar ODE of order > 3 wrt &; order 2 wrt 3;
@ systems of ODE of order > 2 wrt L.

The solution space S of the ODE & corresponds to the space of
integral curves in &€ of the line field E, i.e. S= E/E.

Does (G — £, w) of type (G, P) descend to a Cartan geometry
(G — S,w) of type (G, Q)7 ( ixs = 0.)

Definition

An ODE is of C-class iff its canon. Cartan geom. satisfies ixr = 0.

Parabolic analogy: Correspondence and twistor spaces (Cap, 2005).
Here, it is sufficient to test harmonic curvature xy.
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Example 1: scalar 3rd order ODE

For y" = f(x,y,y’,y"), have the relative ¢-invariants:
y Y,y,y
li = Wiinschmann invariant, Fh = fyuyuyuyu

These comprise k4.
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Example 1: scalar 3rd order ODE

For y"” = f(x,y,y’,¥"), have the relative €-invariants:
li = Wiinschmann invariant, Fh = fyuyuyuyu

These comprise k. Geometric interpretation:
@ / =0: Get a 3-dim contact projective structure on £/F;
e /1 =0: Get a 3-dim conf. str. on S = E/E ( ).

/2:(.)411_.-" L=0

Dennis The On C-class equations 11/18



Example 2: scalar 2nd order ODE

For y” = f(x,y,y’), have relative P-invariants (Tresse 1896):
ly = complicated, h = f, 1,1,

These comprise ky.
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Example 2: scalar 2nd order ODE

For y” = f(x,y,y’), have relative P-invariants (Tresse 1896):
ly = complicated, h = f, 1,1,

These comprise k. Geometric interpretation:
@ /> = 0: geodesic eqn for a 2-dim projective connection.
@ /; = 0: dual 2nd order ODE is a geodesic eqn ( ).

b:(}f h=0
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Model fibration for higher-order ODE

X

;.;i.: ODE E upto €

Solution space S is equipped

with a GLs-structure
(ODE systems: Segré structure modelled
o on Seg(v,(P) x P™1) — P(V, @ R™))
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Facts from parabolic geometry theory

p
—
Let (G — M,w) be of type (G, P), where g =g_ ©go D g+.
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p
Let (G — M,w) be of type (G, P), where g =g_ ©go D g+.
Via Killing form, s : G — A%(g/p)* ® g =N\’ p+ @ g.

Have a homology differential 9* on /\2 P ®g. Say wis if
im(k) lies in positive hom.; it is if 0"k = 0.

Harmonic curvature

ky = £k mod im(0%) ‘
ker(0*)

Kostant: As go-modules, \? g* @ g = im(8*) & ker((J) @ im(d)
—_———
ker(0)

o Kerl0) o er(0) 22 K8 = H2(g_, ).
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Higher-order ODE (non-parabolic)

Recall g = gl, x V.
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Recall g = gl, x V,,. Can introduce a natural (-,-) on g s.t.
VA, B € gly and Yu,v € V,,
(A,B) =tr(A"B), (Au,v) = (u,Av).

Extend to C*(g,g). Have Lie alg cohom diff 9; on C*(g, g).
Define 0* by

<8990’1/}> = <907 a*¢>
Check: Get a P—equwarlant map 0% : A2(g/p)* @ g — (g/p)* @ ¢

N = ker(0%) |,
’ 3! regular / normal (9*k = 0) Cartan connection assoc. to ODE‘.
Define essential curvature kg = k mod im(9*) € fz((g*))

(Can check that ﬁ(g)) completely reducible.) If ixkg = 0, we say

the ODE is Wilczynski-flat.

Does ixkg = 0 imply ixx = 07
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C-classes for higher order ODE

Theorem (Cap, Doubrov, T.)
All Wilczynski-flat ODE form a C-class in the following settings:

@ scalar ODE of order > 3 wrt €; order 2 wrt 33,
@ systems of ODE of order > 2 wrt ‘.
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Let d“ = covariant exterior derivative. (Bianchi: d“K = 0.)
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C-classes for higher order ODE
Theorem (Cap, Doubrov, T.)

All Wilczynski-flat ODE form a C-class in the following settings:
@ scalar ODE of order > 3 wrt €; order 2 wrt 33,
@ systems of ODE of order > 2 wrt ‘.

Proof sketch.

Let E = {6 € ker(8*) € A’(g/p)* © g : ixp = 0}

Let d“ = covariant exterior derivative. (Bianchi: d“K = 0.)

@ Prop: If ixke =0 and ¢ € Q2_(G,g)" is in E, then 9*d“¢ € E.

hor

@ Write K = Ki + Ky, with K; € Q2_(G,9)", K1 € E, Ky = %),

hor

hom. of ¢ is > £ > 0. (3 for £ = 1 by Wilczynski-flatness.)
@ Bianchi = 0"d“ K, = —0*d“K; € E.

@ Focus on hom. ¢-component to correct K; and K,. Get new
Ky = 0*1 with ¢ of hom. > ¢+ 1. lterate until K, = 0.
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Higher-order C-class examples

Classical fact: The submax sym dim for scalar ODE is usually 2
less than the max, except for 5th and 7th order (where it is 1 less).
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Higher-order C-class examples

Classical fact: The submax sym dim for scalar ODE is usually 2
less than the max, except for 5th and 7th order (where it is 1 less).
For the exceptions, the unique submax sym models are:

g(u//)2u(5) _ 45u//u///u//// + 40(u///)3 =0
10(u'”)3u(7)—70(u”' 2@ u(ﬁ)—49(u”/)2(u(s))2—|—280u”/(u(4))2u(5)—175(u(4))4 =0.
These models are homogeneous and have contact sym alg Ay = sl3

and G, = sp,. For both, isotropy is a “principal slo”. Decompose
as slp-modules and define “extension functor”: e.g.

si=sl3=sL®V, < g=gl,xV,

Curvature x(x,y) = ¢([x,y]) — [¢(x), ¢(y)] is normal and ixx = 0.
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A G, non-example

5= Lie(Gy) =shbdVyy < g=glhxVig
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A G, non-example

5:= Lie(Gy) = sbdVig < g=glhyxVig ~ |11th order ODE?|

ODE ~~ "filtered Gp-structures of type m”, but the
. For scalar ODE, “strong = weak” (derived flags) is
nec./suff., i.e. [TE, T = T-min(i)-1g,
—11
-7,-1 -8 | -9 -10

D)

af

-2 -3 | -4 —-5+1

-1

Since [Sa;+ays 520 +as] = 53014205, 1-€. (—8,—9) — —11, this does
not come from an (11th order) ODE.
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