Exceptionally simple PDE

Dennis The

Department of Mathematics & Statistics The Arctic University of Norway UiT

Pure Mathematics Colloquium University of Waterloo

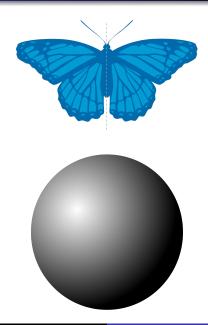
January 5, 2018

Outline

- **1** Symmetry & various geometric realizations of G_2
- 2 New models: Exceptionally simple PDE
- Geometry underlying the new models

Symmetry and G_2

Symmetry



Continuous symmetry

• 1880's: Sophus Lie pioneered the study of "continuous transformation groups" in the context of differential equations.

Continuous symmetry

- 1880's: Sophus Lie pioneered the study of "continuous transformation groups" in the context of differential equations.
- → Lie group: group + manifold

Continuous symmetry

- 1880's: Sophus Lie pioneered the study of "continuous transformation groups" in the context of differential equations.
- → Lie group: group + manifold
- \leadsto Lie algebra: vector space $\mathfrak g$ with a skew, bilinear $[\cdot,\cdot]$ s.t.

$$[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, \quad \forall a, b, c \in \mathfrak{g}.$$

Simple Lie algebras: classified by Killing (1888), Cartan (1894):

Simple Lie algebras: classified by Killing (1888), Cartan (1894):

• Classical:
$$\begin{array}{ll} A_\ell = \mathfrak{sl}_{\ell+1}(\mathbb{C}), & B_\ell = \mathfrak{so}_{2\ell+1}(\mathbb{C}), \\ C_\ell = \mathfrak{sp}_{2\ell}(\mathbb{C}), & D_\ell = \mathfrak{so}_{2\ell}(\mathbb{C}). \end{array}$$

Simple Lie algebras: classified by Killing (1888), Cartan (1894):

• Classical:
$$egin{aligned} A_\ell &= \mathfrak{sl}_{\ell+1}(\mathbb{C}), & B_\ell &= \mathfrak{so}_{2\ell+1}(\mathbb{C}), \\ C_\ell &= \mathfrak{sp}_{2\ell}(\mathbb{C}), & D_\ell &= \mathfrak{so}_{2\ell}(\mathbb{C}). \end{aligned}$$

Simple Lie algebras: classified by Killing (1888), Cartan (1894):

• Classical:
$$\begin{array}{ll} A_\ell = \mathfrak{sl}_{\ell+1}(\mathbb{C}), & B_\ell = \mathfrak{so}_{2\ell+1}(\mathbb{C}), \\ C_\ell = \mathfrak{sp}_{2\ell}(\mathbb{C}), & D_\ell = \mathfrak{so}_{2\ell}(\mathbb{C}). \end{array}$$

This is a beautiful piece of mathematics and is well-known. It is often presented with the aid of Dynkin diagrams, e.g.

Simple Lie algebras: classified by Killing (1888), Cartan (1894):

• Classical:
$$\begin{array}{ll} A_{\ell} = \mathfrak{sl}_{\ell+1}(\mathbb{C}), & B_{\ell} = \mathfrak{so}_{2\ell+1}(\mathbb{C}), \\ C_{\ell} = \mathfrak{sp}_{2\ell}(\mathbb{C}), & D_{\ell} = \mathfrak{so}_{2\ell}(\mathbb{C}). \end{array}$$

• Exceptional:
$$\frac{\mathfrak{g}}{\dim} \begin{vmatrix} G_2 & F_4 & E_6 & E_7 & E_8 \\ 14 & 52 & 78 & 133 & 248 \end{vmatrix}$$

This is a beautiful piece of mathematics and is well-known. It is often presented with the aid of Dynkin diagrams, e.g.

This is an abstract classification result. What about geometric realizations of \mathfrak{g} , i.e. as symmetries of some structure?

Simple Lie algebras: classified by Killing (1888), Cartan (1894):

- Classical: $\begin{array}{ll} A_{\ell} = \mathfrak{sl}_{\ell+1}(\mathbb{C}), & B_{\ell} = \mathfrak{so}_{2\ell+1}(\mathbb{C}), \\ C_{\ell} = \mathfrak{sp}_{2\ell}(\mathbb{C}), & D_{\ell} = \mathfrak{so}_{2\ell}(\mathbb{C}). \end{array}$
- Exceptional: $\frac{\mathfrak{g}}{\dim} \begin{vmatrix} G_2 & F_4 & E_6 & E_7 & E_8 \\ 14 & 52 & 78 & 133 & 248 \end{vmatrix}$

This is a beautiful piece of mathematics and is well-known. It is often presented with the aid of Dynkin diagrams, e.g.

This is an abstract classification result. What about geometric realizations of \mathfrak{g} , i.e. as symmetries of some structure?

Classical cases: Easy. What about the exceptionals?

 $GL_7(\mathbb{C})$ acts with an open orbit on 3-forms on \mathbb{C}^7 .

 $GL_7(\mathbb{C})$ acts with an open orbit on 3-forms on \mathbb{C}^7 .

Note: $\dim(\textit{GL}_7(\mathbb{C}))=49$ and $\dim(\bigwedge^3\mathbb{C}^7)=35.$

 $GL_7(\mathbb{C})$ acts with an open orbit on 3-forms on \mathbb{C}^7 .

Note: $\dim(GL_7(\mathbb{C})) = 49$ and $\dim(\bigwedge^3 \mathbb{C}^7) = 35$.

Engel (1900): $G_2 = \text{stabilizer in } GL_7 \text{ of a generic 3-form } \phi$.

 $GL_7(\mathbb{C})$ acts with an open orbit on 3-forms on \mathbb{C}^7 .

Note: $\dim(\mathit{GL}_7(\mathbb{C})) = 49$ and $\dim(\bigwedge^3 \mathbb{C}^7) = 35$.

Engel (1900): $G_2 = \text{stabilizer in } GL_7 \text{ of a generic 3-form } \phi$.

Given a basis $\{e_i\}_{i=1}^7$ and dual basis $\{e^i\}_{i=1}^7$, can take:

$$\phi = e^{147} + e^{257} + e^{367} + e^{123} - e^{156} + e^{246} - e^{345},$$

where $e^{ijk} = e^i \wedge e^j \wedge e^k$.

 $GL_7(\mathbb{C})$ acts with an open orbit on 3-forms on \mathbb{C}^7 .

Note: $\dim(GL_7(\mathbb{C})) = 49$ and $\dim(\bigwedge^3 \mathbb{C}^7) = 35$.

Engel (1900): $G_2 = \text{stabilizer in } GL_7 \text{ of a generic 3-form } \phi$.

Given a basis $\{e_i\}_{i=1}^7$ and dual basis $\{e^i\}_{i=1}^7$, can take:

$$\phi = e^{147} + e^{257} + e^{367} + e^{123} - e^{156} + e^{246} - e^{345},$$

where $e^{ijk} = e^i \wedge e^j \wedge e^k$.

(Over \mathbb{R} , \exists 2 open orbits. Get the cpt and split real forms of $\textit{G}_{2\cdot}$)

The real (normed) division algebras are $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.

The real (normed) division algebras are $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.

 $\mathbb{H} = \operatorname{span}_{\mathbb{R}}\{1, i, j, k\}$ is associative / non-comm. with relations

$$i^2 = j^2 = k^2 = ijk = -1.$$

The real (normed) division algebras are $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.

 $\mathbb{H} = \operatorname{span}_{\mathbb{R}}\{1, i, j, k\}$ is associative / non-comm. with relations

$$i^2 = j^2 = k^2 = ijk = -1.$$

 $\mathbb{O} = \operatorname{span}_{\mathbb{R}}\{1, i_1, ..., i_7\}$ is a non-associative / non-comm. algebra.

The real (normed) division algebras are $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.

 $\mathbb{H} = \operatorname{span}_{\mathbb{R}}\{1, i, j, k\}$ is associative / non-comm. with relations

$$i^2 = j^2 = k^2 = ijk = -1.$$

 $\mathbb{O} = \operatorname{span}_{\mathbb{R}}\{1, i_1, ..., i_7\}$ is a non-associative / non-comm. algebra.

Cartan (1914): $G_2 = Aut(\mathbb{O})$. (Compact form here.)

The real (normed) division algebras are $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.

 $\mathbb{H} = \operatorname{span}_{\mathbb{R}}\{1, i, j, k\}$ is associative / non-comm. with relations

$$i^2 = j^2 = k^2 = ijk = -1.$$

 $\mathbb{O} = \operatorname{span}_{\mathbb{R}}\{1, i_1, ..., i_7\}$ is a non-associative / non-comm. algebra.

Cartan (1914): $G_2 = Aut(\mathbb{O})$. (Compact form here.)

On $\mathbb{V} = \mathfrak{Im}(\mathbb{O})$, have a 7-dim cross-product

$$x \times y = xy + \langle x, y \rangle 1.$$

We have the generic 3-form $\phi(x, y, z) = \langle x \times y, z \rangle$.

The real (normed) division algebras are $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.

 $\mathbb{H} = \operatorname{span}_{\mathbb{R}}\{1, i, j, k\}$ is associative / non-comm. with relations

$$i^2 = j^2 = k^2 = ijk = -1.$$

 $\mathbb{O} = \operatorname{span}_{\mathbb{R}}\{1, i_1, ..., i_7\}$ is a non-associative / non-comm. algebra.

Cartan (1914): $G_2 = Aut(\mathbb{O})$. (Compact form here.)

On $\mathbb{V} = \mathfrak{Im}(\mathbb{O})$, have a 7-dim cross-product

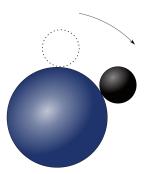
$$x \times y = xy + \langle x, y \rangle 1.$$

We have the generic 3-form $\phi(x, y, z) = \langle x \times y, z \rangle$.

(Split form of G_2 arises from automorphisms of split-octonions.)

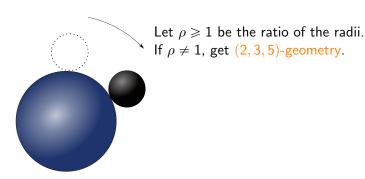
Consider one ball rolling on another without twisting or slipping.

- Configuration space *M* is 5-dimensional.
- No twisting or slipping ⇒ constraints on velocity space TM.
 Get rank 2 distribution D ⊂ TM of allowable directions.



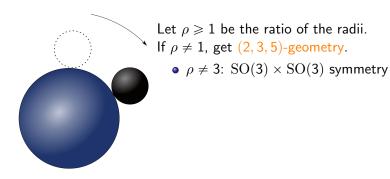
Consider one ball rolling on another without twisting or slipping.

- Configuration space M is 5-dimensional.
- No twisting or slipping ⇒ constraints on velocity space TM.
 Get rank 2 distribution D ⊂ TM of allowable directions.



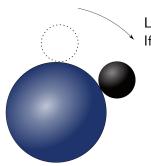
Consider one ball rolling on another without twisting or slipping.

- Configuration space *M* is 5-dimensional.
- No twisting or slipping \Rightarrow constraints on velocity space TM. Get rank 2 distribution $D \subset TM$ of allowable directions.



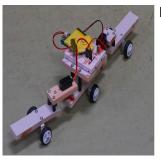
Consider one ball rolling on another without twisting or slipping.

- Configuration space *M* is 5-dimensional.
- No twisting or slipping ⇒ constraints on velocity space TM.
 Get rank 2 distribution D ⊂ TM of allowable directions.



Let $\rho \geqslant 1$ be the ratio of the radii. If $\rho \neq 1$, get (2,3,5)-geometry.

- $\rho \neq 3$: $SO(3) \times SO(3)$ symmetry
- $\rho = 3$: (split) \mathfrak{g}_2 symmetry (Bryant, Zelenko, Bor–Montgomery, Baez–Huerta)



Nurowski (2014):

• Consider a tri-segment snake with fixed lengths (a, b, c).

Nurowski (2014):

- Consider a tri-segment snake with fixed lengths (a, b, c).
- Put wheels at ends $\vec{r_1}, \vec{r_4}$, and on middle bar at $\vec{r} := (1 s)\vec{r_2} + s\vec{r_3}$.

Nurowski (2014):

- Consider a tri-segment snake with fixed lengths (a, b, c).
- Put wheels at ends $\vec{r_1}$, $\vec{r_4}$, and on middle bar at $\vec{r} := (1 s)\vec{r_2} + s\vec{r_3}$.
- 5-dim configuration space M.

Nurowski (2014):

- Consider a tri-segment snake with fixed lengths (a, b, c).
- Put wheels at ends $\vec{r_1}, \vec{r_4}$, and on middle bar at $\vec{r} := (1-s)\vec{r_2} + s\vec{r_3}$.
- 5-dim configuration space M.
- Have (2,3,5) "snake distribution" coming from non-holonomic constraints:

$$d\vec{r_1}||(\vec{r_1}-\vec{r_2}), d\vec{r}||(\vec{r_2}-\vec{r_3}), d\vec{r_4}||(\vec{r_3}-\vec{r_4}).$$

Nurowski (2014):

- Consider a tri-segment snake with fixed lengths (a, b, c).
- Put wheels at ends $\vec{r_1}$, $\vec{r_4}$, and on middle bar at $\vec{r} := (1 s)\vec{r_2} + s\vec{r_3}$.
- 5-dim configuration space M.
- Have (2,3,5) "snake distribution" coming from non-holonomic constraints:

$$d\vec{r_1}||(\vec{r_1}-\vec{r_2}), d\vec{r}||(\vec{r_2}-\vec{r_3}), d\vec{r_4}||(\vec{r_3}-\vec{r_4}).$$

Q: \exists ? (a, b, c, s) s.t. the snake distribution has \mathfrak{g}_2 -symmetry?

Nurowski (2014):

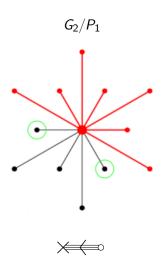
- Consider a tri-segment snake with fixed lengths (a, b, c).
- Put wheels at ends $\vec{r_1}, \vec{r_4}$, and on middle bar at $\vec{r} := (1 s)\vec{r_2} + s\vec{r_3}$.
- 5-dim configuration space M.
- Have (2,3,5) "snake distribution" coming from non-holonomic constraints:

$$d\vec{r_1}||(\vec{r_1}-\vec{r_2}), d\vec{r}||(\vec{r_2}-\vec{r_3}), d\vec{r_4}||(\vec{r_3}-\vec{r_4}).$$

Q: \exists ? (a, b, c, s) s.t. the snake distribution has \mathfrak{g}_2 -symmetry?

(He doubts it: "A G_2 -snake may be as mythical as a unicorn or yeti.")

(2,3,5) from the G_2 root diagram



Cartan & Engel (1893): Structures with G_2 symmetry

Dim	Geometric structure	Model
7	Parabolic Goursat PDE ${\cal F}$	$ 9(u_{xx})^{2} + 12(u_{yy})^{2}(u_{xx}u_{yy} - (u_{xy})^{2}) +32(u_{xy})^{3} - 36u_{xx}u_{xy}u_{yy} = 0 $
6	Involutive pair of PDE ${\cal E}$	$u_{xx} = \frac{1}{3}(u_{yy})^3, u_{xy} = \frac{1}{2}(u_{yy})^2$
5	$(2,3,5)$ -distrib. $\overline{\mathcal{E}}$	$dU - PdX,$ $dP - QdX,$ $dZ - Q^2dX$ (a.k.a. Hilbert-Cartan: $Z' = (U'')^2$)
5	G ₂ -contact structure (contact twisted cubic field)	$dz + x_1 dy_1 - y_1 dx_1 + x_2 dy_2 - y_2 dx_2 = 0,$ $dx_2^2 + \sqrt{3} dy_1 dy_2 = 0,$ $dx_2 dy_2 - 3 dx_1 dy_1 = 0,$ $dy_2^2 + \sqrt{3} dx_1 dx_2 = 0$

Exceptionally simple PDE

Q: Explicitly generalize the Cartan-Engel models to other g.

Q: Explicitly generalize the Cartan-Engel models to other g.

This seems like an absolutely ridiculous question, e.g. for E_8 ?!

Q: Explicitly generalize the Cartan–Engel models to other \mathfrak{g} .

This seems like an absolutely ridiculous question, e.g. for E_8 ?!

Cartan (1893): In a single sentence, he refers to E_8 acting on a 57-dim space, i.e. adjoint variety $E_8/P_8 \hookrightarrow \mathbb{P}(E_8)$ (Non-explicit).

Q: Explicitly generalize the Cartan–Engel models to other \mathfrak{g} .

This seems like an absolutely ridiculous question, e.g. for E_8 ?!

Cartan (1893): In a single sentence, he refers to E_8 acting on a 57-dim space, i.e. adjoint variety $E_8/P_8 \hookrightarrow \mathbb{P}(E_8)$ (Non-explicit).

Yamaguchi (1999): Generalized Cartan's reduction thms (1910, 1911). (PDE are non-explicit).

W: complex Jordan algebra with a distinguished $\mathfrak{C} \in S^3W^*$.

W: complex Jordan algebra with a distinguished $\mathfrak{C} \in S^3W^*$.

• Let \mathbb{A} be $\mathbb{R}_{\mathbb{C}}, \mathbb{C}_{\mathbb{C}}, \mathbb{H}_{\mathbb{C}}, \mathbb{O}_{\mathbb{C}}$, or 0, and

$$W = \mathcal{J}_3(\mathbb{A}) := \left\{ \begin{pmatrix} \lambda_1 & v_1 & v_2 \\ \overline{v_1} & \lambda_2 & v_3 \\ \overline{v_2} & \overline{v_3} & \lambda_3 \end{pmatrix} : v_i \in \mathbb{A}, \ \lambda_i \in \mathbb{C} \right\}.$$

Here, $\mathfrak{C}(t^3) = \mathfrak{C}(t, t, t) := \det(t)$.

W: complex Jordan algebra with a distinguished $\mathfrak{C} \in S^3W^*$.

• Let \mathbb{A} be $\mathbb{R}_{\mathbb{C}}, \mathbb{C}_{\mathbb{C}}, \mathbb{H}_{\mathbb{C}}, \mathbb{O}_{\mathbb{C}}$, or 0, and

$$W = \mathcal{J}_3(\mathbb{A}) := \left\{ \begin{pmatrix} \lambda_1 & v_1 & v_2 \\ \overline{v_1} & \lambda_2 & v_3 \\ \overline{v_2} & \overline{v_3} & \lambda_3 \end{pmatrix} : v_i \in \mathbb{A}, \ \lambda_i \in \mathbb{C} \right\}.$$

Here, $\mathfrak{C}(t^3) = \mathfrak{C}(t, t, t) := \det(t)$.

• $W = \mathbb{C}$ with $\mathfrak{C}(t^3) := \frac{t^3}{3}$.

W: complex Jordan algebra with a distinguished $\mathfrak{C} \in S^3W^*$.

• Let \mathbb{A} be $\mathbb{R}_{\mathbb{C}}, \mathbb{C}_{\mathbb{C}}, \mathbb{H}_{\mathbb{C}}, \mathbb{O}_{\mathbb{C}}$, or 0, and

$$W = \mathcal{J}_3(\mathbb{A}) := \left\{ \begin{pmatrix} \lambda_1 & v_1 & v_2 \\ \overline{v_1} & \lambda_2 & v_3 \\ \overline{v_2} & \overline{v_3} & \lambda_3 \end{pmatrix} : v_i \in \mathbb{A}, \ \lambda_i \in \mathbb{C} \right\}.$$

Here, $\mathfrak{C}(t^3) = \mathfrak{C}(t, t, t) := \det(t)$.

- $W = \mathbb{C}$ with $\mathfrak{C}(t^3) := \frac{t^3}{3}$.
- Given $(\mathbb{C}^m, \langle \cdot, \cdot \rangle)$, let $W = \mathcal{JS}_m = \mathbb{C}^m \oplus \mathbb{C}$ ("spin factor"). Given $t = (v, \lambda)$, we have $\mathfrak{C}(t^3) := \langle v, v \rangle \lambda$.

W: complex Jordan algebra with a distinguished $\mathfrak{C} \in S^3W^*$.

• Let \mathbb{A} be $\mathbb{R}_\mathbb{C}, \mathbb{C}_\mathbb{C}, \mathbb{H}_\mathbb{C}, \mathbb{O}_\mathbb{C}$, or 0, and

$$W = \mathcal{J}_3(\mathbb{A}) := \left\{ \begin{pmatrix} \lambda_1 & v_1 & v_2 \\ \overline{v_1} & \lambda_2 & v_3 \\ \overline{v_2} & \overline{v_3} & \lambda_3 \end{pmatrix} : v_i \in \mathbb{A}, \ \lambda_i \in \mathbb{C} \right\}.$$

Here, $\mathfrak{C}(t^3) = \mathfrak{C}(t, t, t) := \det(t)$.

- $W = \mathbb{C}$ with $\mathfrak{C}(t^3) := \frac{t^3}{3}$.
- Given $(\mathbb{C}^m, \langle \cdot, \cdot \rangle)$, let $W = \mathcal{JS}_m = \mathbb{C}^m \oplus \mathbb{C}$ ("spin factor"). Given $t = (v, \lambda)$, we have $\mathfrak{C}(t^3) := \langle v, v \rangle \lambda$.

NOTE: The Jordan algebra structure plays no role in this talk.

Let $n-1:=\dim(W)$. Basis $\{w_a\}$ on W, dual basis $\{w^a\}$ on W^* . Let $\{x^i\}_{i=0}^{n-1}$ lin.coords on $\mathbb{C}\oplus W$.

Let $n-1:=\dim(W)$. Basis $\{\mathsf{w}_a\}$ on W, dual basis $\{\mathsf{w}^a\}$ on W^* . Let $\{x^i\}_{i=0}^{n-1}$ lin.coords on $\mathbb{C}\oplus W$. Param. submfld of $J^2(\mathbb{C}^n,\mathbb{C})$:

$$\mathcal{E}: \ (u_{ij}) = \left(\begin{array}{c} u_{00} \ u_{0b} \\ u_{a0} \ u_{ab} \end{array}\right) = \left(\begin{array}{cc} \mathfrak{C}(t^3) & \frac{3}{2}\mathfrak{C}_b(t^2) \\ \frac{3}{2}\mathfrak{C}_a(t^2) & 3\mathfrak{C}_{ab}(t) \end{array}\right), \quad t \in W.$$

Let $n-1:=\dim(W)$. Basis $\{\mathsf{w}_a\}$ on W, dual basis $\{\mathsf{w}^a\}$ on W^* . Let $\{x^i\}_{i=0}^{n-1}$ lin.coords on $\mathbb{C} \oplus W$. Param. submfld of $J^2(\mathbb{C}^n,\mathbb{C})$:

$$\mathcal{E}: \ (u_{ij}) = \left(\begin{array}{c} u_{00} \ u_{0b} \\ u_{a0} \ u_{ab} \end{array} \right) = \left(\begin{array}{cc} \mathfrak{C}(t^3) & \frac{3}{2}\mathfrak{C}_b(t^2) \\ \frac{3}{2}\mathfrak{C}_a(t^2) & 3\mathfrak{C}_{ab}(t) \end{array} \right), \quad t \in W.$$

Theorem (T. 2017, Contact symmetries of \mathcal{E})

W	$ \begin{array}{ c c } \mathcal{J}\mathcal{S}_{2\ell-5} \\ (\ell \geqslant 3) \end{array} $		\mathbb{C}	$\mathcal{J}_3(\underline{0})$	$\mathcal{J}_3(\mathbb{R}_\mathbb{C})$	$\mathcal{J}_3(\mathbb{C}_\mathbb{C})$	$\mathcal{J}_3(\mathbb{H}_\mathbb{C})$	$\mathcal{J}_3(\mathbb{O}_\mathbb{C})$
n	$2\ell-3$	$2\ell - 4$	2	4	7	10	16	28
$\mathit{sym}(\mathcal{E})$	B_{ℓ}	D_ℓ	G_2	D_4	F ₄	E_6	E ₇	<i>E</i> ₈

Let $n-1:=\dim(W)$. Basis $\{w_a\}$ on W, dual basis $\{w^a\}$ on W^* . Let $\{x^i\}_{i=0}^{n-1}$ lin.coords on $\mathbb{C}\oplus W$. Param. submfld of $J^2(\mathbb{C}^n,\mathbb{C})$:

$$\mathcal{E}:\ (u_{ij})=\left(\begin{array}{c}u_{00}\ u_{0b}\\u_{a0}\ u_{ab}\end{array}\right)=\left(\begin{array}{cc}\mathfrak{C}(t^3)&\frac{3}{2}\mathfrak{C}_b(t^2)\\\frac{3}{2}\mathfrak{C}_a(t^2)&3\mathfrak{C}_{ab}(t)\end{array}\right),\quad t\in W.$$

Theorem (T. 2017, Contact symmetries of \mathcal{E})

W	$ \begin{array}{c c} \mathcal{J}\mathcal{S}_{2\ell-5} \\ (\ell \geqslant 3) \end{array} $	$ \mathcal{JS}_{2\ell-6} \\ (\ell \geqslant 5) $	\mathbb{C}	$\mathcal{J}_3(\underline{0})$	$\mathcal{J}_3(\mathbb{R}_\mathbb{C})$	$\mathcal{J}_3(\mathbb{C}_\mathbb{C})$	$\mathcal{J}_3(\mathbb{H}_\mathbb{C})$	$\mathcal{J}_3(\mathbb{O}_\mathbb{C})$
n	$2\ell-3$	$2\ell - 4$	2	4	7	10	16	28
$\mathit{sym}(\mathcal{E})$	B_{ℓ}	D_ℓ	G_2	D_4	F ₄	E_6	E ₇	<i>E</i> ₈

Theorem (Degenerate cases)

- $u_{ij} = 0$, $1 \le i, j \le n$: point sym = A_{n+1} . (NOTE: \mathfrak{sl}_2 excluded!)
- $u_{ijk} = 0$, $1 \le i, j, k \le n$: contact sym = C_{n+1} .

Other exceptionally simple models

$$\mathcal{F}: \begin{cases} u_{00} = t^a t^b u_{ab} - 2\mathfrak{C}(t^3), \\ u_{0a} = t^b u_{ab} - \frac{3}{2}\mathfrak{C}_a(t^2) \end{cases} \quad (t \in W).$$

$$\mathcal{V} = \{ [\mathbf{V}(\lambda, t)] : [\lambda, t] \in \mathbb{P}(\mathbb{C} \oplus W) \} \subset \mathbb{P}(\mathcal{C}), \text{ where }$$

$$\mathbf{V}(\lambda, t) = \lambda^3 \mathbf{X}_0 - \lambda^2 t^a \mathbf{X}_a - \frac{1}{2} \mathfrak{C}(t^3) \mathbf{U}^0 - \frac{3}{2} \lambda \mathfrak{C}_a(t^2) \mathbf{U}^a,$$

$$\text{with } \mathbf{X}_i = \partial_{\mathbf{x}^i} + u_i \partial_u, \quad \mathbf{U}^i = \partial_{u_i}.$$

$$\begin{split} \tau(\mathcal{V}) &= \{ \mathbf{Q} = \mathbf{0} \} \subset \mathbb{P}(\mathcal{C}) \text{, where} \\ \mathbf{Q} &= (\omega^i \theta_i)^2 + 2\theta_0 \mathfrak{C}(\Omega^3) - 2\omega^0 \mathfrak{C}^*(\Theta^3) - 9\mathfrak{C}_a(\Omega^2) (\mathfrak{C}^*)^a (\Theta^2), \\ \text{with } \omega^i &= dx^i, \ \theta_i = du_i, \ \Omega = \omega^a \otimes w_a, \ \Theta = \theta_a \otimes w^a. \end{split}$$

$$\overline{\mathcal{E}}: \quad Z_{a}=\tfrac{3}{2}\mathfrak{C}_{a}(T^{2}), \ U_{ab}=3\mathfrak{C}_{ab}(T) \quad (T\in W).$$

Envelopes

Consider the family of inhom. linear PDE param. by $t \in W$:

$$\mathcal{M}_t := u_{00} - 2t^a u_{a0} + t^a t^b u_{ab} - \mathfrak{C}(t^3) = 0$$
 (*)

Envelopes

Consider the family of inhom. linear PDE param. by $t \in W$:

$$\mathcal{M}_t := u_{00} - 2t^a u_{a0} + t^a t^b u_{ab} - \mathfrak{C}(t^3) = 0$$
 (*)

- first-order envelope: $\{\mathcal{M}_t = 0, \partial_{t^a} \mathcal{M}_t = 0\}$ yields \mathcal{F} .
- 2nd-order envelope: $\{\mathcal{M}_t=0, \partial_{t^a}\mathcal{M}_t=0, \partial_{t^a}\partial_{t^b}\mathcal{M}_t=0\}$ yields \mathcal{E} .

NOTE: (*) generalizes the classical "Goursat parametrization".

Geometry behind the new models

Global	Local
Contact mfld (M^{2n+1}, \mathcal{C})	$(x^{i}, u, u_{i}), \sigma := du - u_{i}dx^{i}$ $C = \{\sigma = 0\} = \operatorname{span}\{\partial_{x^{i}} + u_{i}\partial_{u}, \partial_{u_{i}}\}$

Global	Local
Contact mfld (M^{2n+1}, \mathcal{C})	$(x^{i}, u, u_{i}), \sigma := du - u_{i}dx^{i}$ $C = \{\sigma = 0\} = \operatorname{span}\{\partial_{x^{i}} + u_{i}\partial_{u}, \partial_{u_{i}}\}$
${\cal C}$ is a field of conformal symplectic spaces	$d\sigma _{\mathcal{C}} = dx^{i} \wedge du_{i} _{\mathcal{C}} = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$ $\partial_{x^{i}} + u_{i}\partial_{u}, \partial_{u_{i}} \text{ is a CS-basis}$

Global	Local
Contact mfld (M^{2n+1}, \mathcal{C})	$(x^{i}, u, u_{i}), \sigma := du - u_{i}dx^{i}$ $C = \{\sigma = 0\} = \operatorname{span}\{\partial_{x^{i}} + u_{i}\partial_{u}, \partial_{u_{i}}\}$
${\cal C}$ is a field of conformal symplectic spaces	$d\sigma _{\mathcal{C}} = dx^{i} \wedge du_{i} _{\mathcal{C}} = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$ $\partial_{x^{i}} + u_{i}\partial_{u}, \partial_{u_{i}} \text{ is a CS-basis}$
Legendrian subspace at $m \in M$	$\operatorname{span}\{\partial_{x^i}+u_i\partial_u+u_{ij}\partial_{u_j}\}\;(u_{ij}=u_{ji})$

Global	Local
Contact mfld (M^{2n+1}, C)	$(x^{i}, u, u_{i}), \sigma := du - u_{i}dx^{i}$ $C = \{\sigma = 0\} = \operatorname{span}\{\partial_{x^{i}} + u_{i}\partial_{u}, \partial_{u_{i}}\}$
\mathcal{C} is a field of conformal symplectic spaces	$d\sigma _{\mathcal{C}} = dx^{i} \wedge du_{i} _{\mathcal{C}} = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$ $\partial_{x^{i}} + u_{i}\partial_{u}, \partial_{u_{i}} \text{ is a CS-basis}$
Legendrian subspace at $m \in M$	$\operatorname{span}\{\partial_{x^i}+u_i\partial_u+u_{ij}\partial_{u_j}\}\;(\underline{u_{ij}}=\underline{u_{ji}})$
Lagrange–Grassmann bundle $(M^{(1)},\mathcal{C}^{(1)})$	$(x^{i}, u, u_{i}, u_{ij})$ $C^{(1)} = \operatorname{span}\{\partial_{x^{i}} + u_{i}\partial_{u} + u_{ij}\partial_{u_{i}}, \partial_{u_{ij}}\}$

Global	Local
Contact mfld (M^{2n+1}, \mathcal{C})	$(x^{i}, u, u_{i}), \sigma := du - u_{i}dx^{i}$ $C = \{\sigma = 0\} = \operatorname{span}\{\partial_{x^{i}} + u_{i}\partial_{u}, \partial_{u_{i}}\}$
${\cal C}$ is a field of conformal symplectic spaces	$d\sigma _{\mathcal{C}} = dx^{i} \wedge du_{i} _{\mathcal{C}} = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$ $\partial_{x^{i}} + u_{i}\partial_{u}, \partial_{u_{i}} \text{ is a CS-basis}$
Legendrian subspace at $m \in M$	$\operatorname{span}\{\partial_{x^i} + u_i\partial_u + u_{ij}\partial_{u_j}\} \left(u_{ij} = u_{ji}\right)$
Lagrange–Grassmann bundle $(M^{(1)}, \mathcal{C}^{(1)})$	$\mathcal{C}^{(1)} = \operatorname{span}\{\partial_{x^i} + u_i \partial_u + u_{ij} \partial_{u_j}, \partial_{u_{ij}}\}\$

A 2nd order PDE Σ is a submanifold of $M^{(1)}$. A contact sym is a sym of $(M^{(1)}, \mathcal{C}^{(1)})$ that preserves Σ .

Global	Local
Contact mfld (M^{2n+1}, C)	$(x^{i}, u, u_{i}), \sigma := du - u_{i}dx^{i}$ $C = \{\sigma = 0\} = \operatorname{span}\{\partial_{x^{i}} + u_{i}\partial_{u}, \partial_{u_{i}}\}$
C is a field of conformal symplectic spaces	$d\sigma _{\mathcal{C}} = dx^{i} \wedge du_{i} _{\mathcal{C}} = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$ $\partial_{x^{i}} + u_{i}\partial_{u}, \partial_{u_{i}} \text{ is a CS-basis}$
Legendrian subspace at $m \in M$	$\operatorname{span}\{\partial_{x^i}+u_i\partial_u+u_{ij}\partial_{u_j}\}\;(\underline{u_{ij}}=\underline{u_{ji}})$
Lagrange–Grassmann bundle $(M^{(1)}, \mathcal{C}^{(1)})$	$\mathcal{C}^{(1)} = \operatorname{span}\{\partial_{x^i} + u_i \partial_u + u_{ij} \partial_{u_j}, \partial_{u_{ij}}\}\$

A 2nd order PDE Σ is a submanifold of $M^{(1)}$. A contact sym is a sym of $(M^{(1)}, \mathcal{C}^{(1)})$ that preserves Σ .

IDEA: contact mfld + additional structure.

Let
$$\mathcal{V} = \{[v^3] : [v] \in \mathbb{P}^1\}$$
, $V := S^3\mathbb{C}^2$, and $[\eta]$ CS-form on V :

$$\eta(f,g) := \frac{1}{3!} (\mathit{f}_{\mathsf{XXX}} \mathsf{g}_{\mathsf{YYY}} - 3\mathit{f}_{\mathsf{XXY}} \mathsf{g}_{\mathsf{YYX}} + 3\mathit{f}_{\mathsf{XYY}} \mathsf{g}_{\mathsf{YXX}} - \mathit{f}_{\mathsf{YYY}} \mathsf{g}_{\mathsf{XXX}}),$$

 $[\eta]$ is GL_2 -invariant, and $\dim(\mathsf{LG}(V))=3$.

Let
$$\mathcal{V}=\{[v^3]:[v]\in\mathbb{P}^1\}$$
, $V:=S^3\mathbb{C}^2$, and $[\eta]$ CS-form on V :
$$\eta(f,g):=\frac{1}{3!}(f_{\mathsf{xxx}}g_{\mathsf{yyy}}-3f_{\mathsf{xxy}}g_{\mathsf{yyx}}+3f_{\mathsf{xyy}}g_{\mathsf{yxx}}-f_{\mathsf{yyy}}g_{\mathsf{xxx}}),$$

 $[\eta]$ is GL_2 -invariant, and $\dim(LG(V)) = 3$.

Example (Osculating filtration: differentiate $\gamma(t) = (x + ty)^3$)

$$\begin{array}{ccccc} \ell & \subset & \widehat{T}_{\ell} \mathcal{V} & \subset & \widehat{T}_{\ell}^{(2)} \mathcal{V} & \subset & \widehat{T}_{\ell}^{(3)} \mathcal{V} = V \\ \left\langle x^3 \right\rangle & \left\langle x^3, x^2 y \right\rangle & \left\langle x^3, x^2 y, x y^2 \right\rangle \\ & & \text{Legendrian!} \end{array}$$

Let
$$\mathcal{V}=\{[v^3]:[v]\in\mathbb{P}^1\}$$
, $V:=S^3\mathbb{C}^2$, and $[\eta]$ CS-form on V :
$$\eta(f,g):=\frac{1}{3!}(f_{\mathsf{XXX}}g_{\mathsf{YYY}}-3f_{\mathsf{XXY}}g_{\mathsf{YYX}}+3f_{\mathsf{XYY}}g_{\mathsf{YXX}}-f_{\mathsf{YYY}}g_{\mathsf{XXX}}),$$

 $[\eta]$ is GL_2 -invariant, and $\dim(LG(V)) = 3$.

Example (Osculating filtration: differentiate $\gamma(t) = (x + ty)^3$)

$$\begin{array}{ccccc} \ell & \subset & \widehat{T}_{\ell} \mathcal{V} & \subset & \widehat{T}_{\ell}^{(2)} \mathcal{V} & \subset & \widehat{T}_{\ell}^{(3)} \mathcal{V} = V \\ \left\langle \mathsf{x}^3 \right\rangle & \left\langle \mathsf{x}^3, \mathsf{x}^2 \mathsf{y} \right\rangle & \left\langle \mathsf{x}^3, \mathsf{x}^2 \mathsf{y}, \mathsf{x} \mathsf{y}^2 \right\rangle \\ & & \text{Legendrian!} \end{array}$$

Wrt CS-basis, i.e. $\eta = \begin{pmatrix} 0 & \mathrm{id}_2 \\ -id_2 & 0 \end{pmatrix}$, have coords $\begin{pmatrix} c_{11} & c_{12} \\ c_{12} & c_{22} \end{pmatrix}$ on $\mathsf{LG}(V)$.

Let $\mathcal{V}=\{[v^3]:[v]\in\mathbb{P}^1\},\ V:=S^3\mathbb{C}^2,\ \mathrm{and}\ [\eta]\ \mathrm{CS}\text{-form on }V$:

$$\eta(f,g) := \frac{1}{3!} (\mathit{f}_{\mathsf{XXX}} \mathsf{g}_{\mathsf{YYY}} - 3\mathit{f}_{\mathsf{XXY}} \mathsf{g}_{\mathsf{YYX}} + 3\mathit{f}_{\mathsf{XYY}} \mathsf{g}_{\mathsf{YXX}} - \mathit{f}_{\mathsf{YYY}} \mathsf{g}_{\mathsf{XXX}}),$$

 $[\eta]$ is GL_2 -invariant, and $\dim(LG(V)) = 3$.

Example (Osculating filtration: differentiate $\gamma(t) = (x + ty)^3$)

$$\begin{array}{ccccc} \ell & \subset & \widehat{T}_{\ell} \mathcal{V} & \subset & \widehat{T}_{\ell}^{(2)} \mathcal{V} & \subset & \widehat{T}_{\ell}^{(3)} \mathcal{V} = V \\ \left\langle x^3 \right\rangle & \left\langle x^3, x^2 y \right\rangle & \left\langle x^3, x^2 y, x y^2 \right\rangle \\ & & \text{Legendrian!} \end{array}$$

Wrt CS-basis, i.e. $\eta = \begin{pmatrix} 0 & \mathrm{id_2} \\ -id_2 & 0 \end{pmatrix}$, have coords $\begin{pmatrix} c_{11} & c_{12} \\ c_{12} & c_{22} \end{pmatrix}$ on $\mathrm{LG}(V)$. Wrt CS-basis $(x^3, -3x^2y, -6y^3, -6xy^2)$,

$$(x + ty)^3 = \left(1, -t, -\frac{t^3}{6}, -\frac{t^2}{2}\right).$$

• $\hat{\mathcal{V}} := {\hat{\mathcal{T}}_{\ell}\mathcal{V} : \ell \in \mathcal{V}} \subsetneq \mathsf{LG}(\mathcal{V})$: differentiate & row reduce:

$$\begin{array}{c} (1,-t,-\frac{t^3}{6},-\frac{t^2}{2}) \\ (0,-1,-\frac{t^2}{2},-t) \end{array} \right\} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{t^3}{3} & \frac{t^2}{2} \\ 0 & 1 & \frac{t^2}{2} & t \end{pmatrix}$$

• $\hat{\mathcal{V}} := {\hat{\mathcal{T}}_{\ell}\mathcal{V} : \ell \in \mathcal{V}} \subsetneq \mathsf{LG}(\mathcal{V})$: differentiate & row reduce:

$$\begin{array}{c} (1,-t,-\frac{t^3}{6},-\frac{t^2}{2}) \\ (0,-1,-\frac{t^2}{2},-t) \end{array} \right\} \leadsto \begin{pmatrix} 1 & 0 & \frac{t^3}{3} & \frac{t^2}{2} \\ 0 & 1 & \frac{t^2}{2} & t \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} c_{11} & c_{12} \\ c_{12} & c_{22} \end{pmatrix} = \begin{pmatrix} \frac{t^3}{3} & \frac{t^2}{2} \\ \frac{t^2}{2} & t \end{pmatrix} \quad \text{(curve in LG}(V)).$$

• $\hat{\mathcal{V}} := {\hat{\mathcal{T}}_{\ell}\mathcal{V} : \ell \in \mathcal{V}} \subsetneq \mathsf{LG}(\mathcal{V})$: differentiate & row reduce:

$$\begin{array}{c} (1,-t,-\frac{t^3}{6},-\frac{t^2}{2}) \\ (0,-1,-\frac{t^2}{2},-t) \end{array} \right\} \leadsto \begin{pmatrix} 1 & 0 & \frac{t^3}{3} & \frac{t^2}{2} \\ 0 & 1 & \frac{t^2}{2} & t \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} c_{11} & c_{12} \\ c_{12} & c_{22} \end{pmatrix} = \begin{pmatrix} \frac{t^3}{3} & \frac{t^2}{2} \\ \frac{t^2}{2} & t \end{pmatrix} \quad \text{(curve in LG}(V)).$$

• $\widetilde{\mathcal{V}} := \bigcup_{\ell \in \mathcal{V}} \{ E \in \mathsf{LG}(V) \colon \ell \subset E \}$ (surface in $\mathsf{LG}(V)$).

• $\hat{\mathcal{V}} := {\hat{\mathcal{T}}_{\ell}\mathcal{V} : \ell \in \mathcal{V}} \subsetneq \mathsf{LG}(\mathcal{V})$: differentiate & row reduce:

$$\begin{array}{c} (1,-t,-\frac{t^3}{6},-\frac{t^2}{2}) \\ (0,-1,-\frac{t^2}{2},-t) \end{array} \right\} \leadsto \begin{pmatrix} 1 & 0 & \frac{t^3}{3} & \frac{t^2}{2} \\ 0 & 1 & \frac{t^2}{2} & t \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} c_{11} & c_{12} \\ c_{12} & c_{22} \end{pmatrix} = \begin{pmatrix} \frac{t^3}{3} & \frac{t^2}{2} \\ \frac{t^2}{2} & t \end{pmatrix} \quad \text{(curve in LG}(V)).$$

- $\widetilde{\mathcal{V}} := \bigcup_{\ell \in \mathcal{V}} \{ E \in \mathsf{LG}(V) \colon \ell \subset E \}$ (surface in $\mathsf{LG}(V)$).
- $\tau(\mathcal{V}) := \bigcup_{\ell \in \mathcal{V}} \mathbb{P}(\widehat{T}_{\ell}\mathcal{V}) = \{Q = 0\} \subset \mathbb{P}(V)$, where $[Q] \in \mathbb{P}(S^4V^*)$ (discriminant).

• $\hat{\mathcal{V}} := {\hat{\mathcal{T}}_{\ell}\mathcal{V} : \ell \in \mathcal{V}} \subsetneq \mathsf{LG}(\mathcal{V})$: differentiate & row reduce:

$$\begin{array}{c} (1,-t,-\frac{t^3}{6},-\frac{t^2}{2}) \\ (0,-1,-\frac{t^2}{2},-t) \end{array} \right\} \leadsto \begin{pmatrix} 1 & 0 & \frac{t^3}{3} & \frac{t^2}{2} \\ 0 & 1 & \frac{t^2}{2} & t \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} c_{11} & c_{12} \\ c_{12} & c_{22} \end{pmatrix} = \begin{pmatrix} \frac{t^3}{3} & \frac{t^2}{2} \\ \frac{t^2}{2} & t \end{pmatrix} \quad \text{(curve in LG}(V)).$$

- $\widetilde{\mathcal{V}} := \bigcup_{\ell \in \mathcal{V}} \{ E \in \mathsf{LG}(V) \colon \ell \subset E \}$ (surface in $\mathsf{LG}(V)$).
- $\tau(\mathcal{V}) := \bigcup_{\ell \in \mathcal{V}} \mathbb{P}(\widehat{T}_{\ell}\mathcal{V}) = \{Q = 0\} \subset \mathbb{P}(V)$, where $[Q] \in \mathbb{P}(S^4V^*)$ (discriminant).

These all inherit $G_0 \cong GL_2$ invariance from \mathcal{V} . (and $\mathfrak{g}_0 \subsetneq \mathfrak{csp}_4$ is a maximal subalgebra.)

Sub-adjoint varieties

For any complex simple G except SL_2 , the adjoint variety $G/P \hookrightarrow \mathbb{P}(\mathfrak{g})$ is a contact manifold.

Sub-adjoint varieties

For any complex simple $G \ | \ \text{except } SL_2 \ |$, the adjoint variety $G/P \hookrightarrow \mathbb{P}(\mathfrak{g})$ is a contact manifold.

 $ightharpoonup \operatorname{\mathsf{sub-adjoint}}$ variety: G_0 -inv $\mathcal{V} \subset \mathbb{P}(V)$ (Legendrian!)

Sub-adjoint varieties

Example: \longrightarrow \longrightarrow $\stackrel{3}{\circ}$ (twisted cubic)

Sub-adjoint varieties

 $ightharpoonup ext{sub-adjoint variety: } G_0 ext{-inv }\mathcal{V}\subset \mathbb{P}(V) \quad \text{(Legendrian!)}$

Example: \longrightarrow \longrightarrow $\stackrel{3}{\circ}$ (twisted cubic)

G/P	G_0^{ss}/Q	$\mathcal{V} \subsetneq \mathbb{P}(V)$
B_{ℓ}/P_2	$A_1/P_1 \times B_{\ell-2}/P_1$	$Seg(\mathbb{P}^1 imes Q^{2\ell-5})$
D_{ℓ}/P_2	$A_1/P_1 \times D_{\ell-2}/P_1$	$Seg(\mathbb{P}^1 imes Q^{2\ell-6})$
G_2/P_2	A_1/P_1	twisted cubic
D_4/P_2	$(A_1/P_1)^3$	$Seg(\mathbb{P}^1 imes \mathbb{P}^1 imes \mathbb{P}^1)$
F_4/P_1	C_{3}/P_{3}	LG(3,6)
E_6/P_2	A_{5}/P_{3}	Gr(3,6)
E_7/P_1	D_{6}/P_{6}	D_6 -spinor variety
E_8/P_8	E_{7}/P_{7}	Freudenthal variety

Sub-adjoint varieties

For any complex simple $G \ | \ \text{except } SL_2 \ |$, the adjoint variety $G/P \hookrightarrow \mathbb{P}(\mathfrak{g})$ is a contact manifold.

 $ightharpoonup ext{sub-adjoint variety: } G_0 ext{-inv }\mathcal{V}\subset\mathbb{P}(V) \quad \text{(Legendrian!)}$

Example: \longrightarrow \longrightarrow $\stackrel{3}{\circ}$ (twisted cubic)

G/P	G_0^{ss}/Q	$\mathcal{V} \subsetneq \mathbb{P}(V)$
B_{ℓ}/P_2	$A_1/P_1 \times B_{\ell-2}/P_1$	$Seg(\mathbb{P}^1 imes Q^{2\ell-5})$
D_{ℓ}/P_2	$A_1/P_1 \times D_{\ell-2}/P_1$	$Seg(\mathbb{P}^1 imes Q^{2\ell-6})$
G_2/P_2	A_1/P_1	twisted cubic
D_4/P_2	$(A_1/P_1)^3$	$Seg(\mathbb{P}^1 imes \mathbb{P}^1 imes \mathbb{P}^1)$
F_4/P_1	C_{3}/P_{3}	LG(3,6)
E_6/P_2	A_{5}/P_{3}	Gr(3,6)
E_7/P_1	D_{6}/P_{6}	D_6 -spinor variety
E_{8}/P_{8}	E_{7}/P_{7}	Freudenthal variety

Type A: $V = \mathbb{P}^{n-1} \dot{\sqcup} \mathbb{P}^{n-1}$ (reducible); Type C: $V = \mathbb{P}(V)$ (not proper).

Let $G/P \hookrightarrow \mathbb{P}(\mathfrak{g})$, $2n+1 = \dim(G/P)$, $G_0 \subset P$ the reductive part.

Let $G/P \hookrightarrow \mathbb{P}(\mathfrak{g})$, $2n+1 = \dim(G/P)$, $G_0 \subset P$ the reductive part.

Definition $(G \neq A_{\ell}, C_{\ell})$

A G-contact structure is a contact mfld (M^{2n+1}, \mathcal{C}) with any of:

• a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;

Let $G/P \hookrightarrow \mathbb{P}(\mathfrak{g})$, $2n+1 = \dim(G/P)$, $G_0 \subset P$ the reductive part.

Definition $(G \neq A_{\ell}, C_{\ell})$

A G-contact structure is a contact mfld (M^{2n+1}, \mathcal{C}) with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;
- a field $\mathcal{E} = \hat{\mathcal{V}} \subset LG(\mathcal{C}) = M^{(1)}$;

Let $G/P \hookrightarrow \mathbb{P}(\mathfrak{g})$, $2n+1 = \dim(G/P)$, $G_0 \subset P$ the reductive part.

Definition $(G \neq A_{\ell}, C_{\ell})$

A G-contact structure is a contact mfld (M^{2n+1}, \mathcal{C}) with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;
- a field $\mathcal{E} = \hat{\mathcal{V}} \subset LG(\mathcal{C}) = M^{(1)}$;
- a field $\mathcal{F} = \widetilde{\mathcal{V}} \subset LG(\mathcal{C}) = M^{(1)}$;

Let $G/P \hookrightarrow \mathbb{P}(\mathfrak{g})$, $2n+1 = \dim(G/P)$, $G_0 \subset P$ the reductive part.

Definition $(G \neq A_{\ell}, C_{\ell})$

A G-contact structure is a contact mfld (M^{2n+1}, \mathcal{C}) with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;
- a field $\mathcal{E} = \hat{\mathcal{V}} \subset LG(\mathcal{C}) = M^{(1)}$;
- a field $\mathcal{F} = \overset{\sim}{\mathcal{V}} \subset LG(\mathcal{C}) = M^{(1)}$;
- a field $\tau(\mathcal{V}) \subset \mathbb{P}(\mathcal{C})$.

Let $G/P \hookrightarrow \mathbb{P}(\mathfrak{g})$, $2n+1 = \dim(G/P)$, $G_0 \subset P$ the reductive part.

Definition $(G \neq A_{\ell}, C_{\ell})$

A G-contact structure is a contact mfld (M^{2n+1}, \mathcal{C}) with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;
- a field $\mathcal{E} = \hat{\mathcal{V}} \subset LG(\mathcal{C}) = M^{(1)}$;
- a field $\mathcal{F} = \overset{\sim}{\mathcal{V}} \subset LG(\mathcal{C}) = M^{(1)}$;
- a field $\tau(\mathcal{V}) \subset \mathbb{P}(\mathcal{C})$.

(Get compatible str grp reductions $G_0 \rightarrow CSp_{2n}$. : same sym alg!)

Let $G/P \hookrightarrow \mathbb{P}(\mathfrak{g})$, $2n+1 = \dim(G/P)$, $G_0 \subset P$ the reductive part.

Definition $(G \neq A_{\ell}, C_{\ell})$

A G-contact structure is a contact mfld (M^{2n+1}, \mathcal{C}) with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;
- a field $\mathcal{E} = \widehat{\mathcal{V}} \subset LG(\mathcal{C}) = M^{(1)}$;
- a field $\mathcal{F} = \overset{\sim}{\mathcal{V}} \subset LG(\mathcal{C}) = M^{(1)}$;
- a field $\tau(\mathcal{V}) \subset \mathbb{P}(\mathcal{C})$.

(Get compatible str grp reductions $G_0 \to CSp_{2n}$. : same sym alg!)

• Equivalence problem is solved $\Rightarrow \dim(sym) \leqslant \dim(\mathfrak{g})$.

Let $G/P \hookrightarrow \mathbb{P}(\mathfrak{g})$, $2n+1 = \dim(G/P)$, $G_0 \subset P$ the reductive part.

Definition $(G \neq A_{\ell}, C_{\ell})$

A G-contact structure is a contact mfld (M^{2n+1}, \mathcal{C}) with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;
- a field $\mathcal{E} = \widehat{\mathcal{V}} \subset LG(\mathcal{C}) = M^{(1)}$;
- a field $\mathcal{F} = \overset{\sim}{\mathcal{V}} \subset LG(\mathcal{C}) = M^{(1)}$;
- a field $\tau(\mathcal{V}) \subset \mathbb{P}(\mathcal{C})$.

(Get compatible str grp reductions $G_0 \rightarrow CSp_{2n}$. \therefore same sym alg!)

- Equivalence problem is solved $\Rightarrow \dim(sym) \leqslant \dim(\mathfrak{g})$.
- Have unique max sym model: flat model, has sym g.

Let $G/P \hookrightarrow \mathbb{P}(\mathfrak{g})$, $2n+1 = \dim(G/P)$, $G_0 \subset P$ the reductive part.

Definition $(G \neq A_{\ell}, C_{\ell})$

A G-contact structure is a contact mfld (M^{2n+1}, \mathcal{C}) with any of:

- a field of sub-adjoint varieties $\mathcal{V} \subset \mathbb{P}(\mathcal{C})$;
- a field $\mathcal{E} = \widehat{\mathcal{V}} \subset LG(\mathcal{C}) = M^{(1)}$;
- a field $\mathcal{F} = \widetilde{\mathcal{V}} \subset LG(\mathcal{C}) = M^{(1)}$;
- a field $\tau(\mathcal{V}) \subset \mathbb{P}(\mathcal{C})$.

(Get compatible str grp reductions $G_0 \rightarrow CSp_{2n}$. : same sym alg!)

- Equivalence problem is solved $\Rightarrow \dim(sym) \leqslant \dim(\mathfrak{g})$.
- Have unique max sym model: flat model, has sym g.
- Can efficiently compute syms of \mathcal{E}, \mathcal{F} by using \mathcal{V} instead. (In the flat cases, can do this uniformly and by-hand!)

Where does & come from?

	A_1	A_2	C_3	F_4	Hyperplane section of Severi
\mathfrak{f}_0^{ss}	A_2	$A_2 \times A_2$	A_5	E_6	Severi varieties
$\mathfrak{f}=\mathfrak{g}_0^{ss}$	C_3	A_5	D_6	E_7	Sub-adjoint varieties
\mathfrak{g}	F_4	E_6	E_7	E_8	Adjoint varieties

Where does & come from?

	A_1	A_2	C_3	F_4	Hyperplane section of Severi
\mathfrak{f}_0^{ss}	A_2	$A_2 \times A_2$	A_5	E_6	Severi varieties
$\mathfrak{f}=\mathfrak{g}_0^{ss}$	C_3	A_5	D_6	E_7	Sub-adjoint varieties
\mathfrak{g}	F_4	E_6	E_7	E_8	Adjoint varieties

Sub-adjoint variety $V = F/Q \subset \mathbb{P}(V)$:

• Osculating filtration at $\ell = V^0 \subset V^{-1} \subset V^{-2} \subset V^{-3} = V$.

Where does C come from?

	A_1	A_2	C_3	F_4	Hyperplane section of Severi
\mathfrak{f}_0^{ss}	A_2	$A_2 \times A_2$	A_5	E_6	Severi varieties
$\mathfrak{f}=\mathfrak{g}_0^{ss}$	C_3	A_5	D_6	E_7	Sub-adjoint varieties
\mathfrak{g}	F_4	E_6	E_7	E_8	Adjoint varieties

Sub-adjoint variety $V = F/Q \subset \mathbb{P}(V)$:

- Osculating filtration at $\ell = V^0 \subset V^{-1} \subset V^{-2} \subset V^{-3} = V$.
- Landsberg-Manivel (2001): Associated graded has a f₀^{ss}-graded algebra structure. Get:

$$V \cong V_0 \oplus V_{-1} \oplus V_{-2} \oplus V_{-3} \cong \mathbb{C} \oplus W \oplus W^* \oplus \mathbb{C}$$
 where $W = \text{Jordan alg with } (\mathfrak{f}_0^{\text{ss}}\text{-inv}) \overset{\mathfrak{C}}{\subseteq} S^3 W^*.$

Dennis The

Where does C come from?

	A_1	A_2	C_3	F_4	Hyperplane section of Severi
\mathfrak{f}_0^{ss}	A_2	$A_2 \times A_2$	A_5	E_6	Severi varieties
$\mathfrak{f}=\mathfrak{g}_0^{ss}$	C_3	A_5	D_6	E_7	Sub-adjoint varieties
\mathfrak{g}	F_4	E_6	E ₇	E_8	Adjoint varieties

Sub-adjoint variety $V = F/Q \subset \mathbb{P}(V)$:

- Osculating filtration at $\ell = V^0 \subset V^{-1} \subset V^{-2} \subset V^{-3} = V$.
- Landsberg-Manivel (2001): Associated graded has a f₀^{ss}-graded algebra structure. Get:

$$V \cong V_0 \oplus V_{-1} \oplus V_{-2} \oplus V_{-3} \cong \mathbb{C} \oplus W \oplus W^* \oplus \mathbb{C}$$
 where $W = \text{Jordan alg with } (f_0^{ss} - \text{inv}) \overset{\mathfrak{C}}{\subseteq} S^3 W^*.$

Lemma

From L.-M., \exists CS-basis adapted to $V = \mathbb{C} \oplus W \oplus \mathbb{C} \oplus W^*$ s.t. $\mathcal{V} \subset \mathbb{P}(V)$ is given by $[\lambda, t^a] \to \left[\lambda^3, -\lambda^2 t^a, -\frac{\mathfrak{C}(t^3)}{2}, -\frac{3\lambda \mathfrak{C}_a(t^2)}{2}\right]$.

Summary

• Can now define F_4 , E_6 , E_7 , E_8 as the contact symmetries of explicit PDE, i.e. manifestations of G-contact structures.

Summary

- Can now define F_4 , E_6 , E_7 , E_8 as the contact symmetries of explicit PDE, i.e. manifestations of G-contact structures.
- Uniform descriptions via a cubic form on a Jordan algebra.

Summary

- Can now define F_4 , E_6 , E_7 , E_8 as the contact symmetries of explicit PDE, i.e. manifestations of G-contact structures.
- Uniform descriptions via a cubic form on a Jordan algebra.
- Moral of the story: Sometimes, complicated questions have exceptionally simple answers.