Jet-determination of symmetries of parabolic geometries*

Dennis The[†]

(joint work with Boris Kruglikov)

Department of Mathematics & Statistics University of Tromsø

Nov. 14, 2017

Symmetry and Geometric Structures, IMPAN, Warsaw

^{*}Mathematische Annalen (2017), doi: 10.1007/s00208-017-1545-z †supported by project M1884-N35 of the Austrian Science Fund (FWF)

The jet-determination problem

Definition

 $At x \in M$,

- $\mathbf{X} \in \mathfrak{X}(M)$ is k-jet determined if $j_{\mathbf{x}}^{k}(\mathbf{X}) \neq 0$.
- $S \subset \mathfrak{X}(M)$ is k-jet determined if $X \mapsto j_x^k(X)$ is injective.

The jet-determination problem

Definition

 $At x \in M$,

- $\mathbf{X} \in \mathfrak{X}(M)$ is k-jet determined if $j_x^k(\mathbf{X}) \neq 0$.
- $S \subset \mathfrak{X}(M)$ is k-jet determined if $X \mapsto j_x^k(X)$ is injective.

Q: If S = sym. alg. of a geometric str. on M, what is the minimal k such that S is k-jet det. at a given $x \in M$?

The jet-determination problem

Definition

 $At x \in M$,

- $\mathbf{X} \in \mathfrak{X}(M)$ is k-jet determined if $j_{\mathbf{x}}^{k}(\mathbf{X}) \neq 0$.
- $S \subset \mathfrak{X}(M)$ is k-jet determined if $X \mapsto j_X^k(X)$ is injective.

Q: If S = sym. alg. of a geometric str. on M, what is the minimal k such that S is k-jet det. at a given $x \in M$?

Example (Conformal structures)

If $g = \sum_{i=1}^n (dx^i)^2$, then here are all CKV $\mathbf{X} = X^i \partial_{x^i}$ for (M,[g]):

$$X^{i} = s^{i} + m^{i}{}_{j}x^{j} + \lambda x^{i} + r^{j}x_{j}x^{i} - \frac{1}{2}r^{i}x_{j}x^{j}$$

Here, S is 2-jet determined (everywhere).

• G: semisimple Lie group, P: parabolic subgroup; $\mathfrak{g} = \mathfrak{g}_{-\nu} \oplus ... \oplus \mathfrak{g}_{\nu}$ with $\mathfrak{g}^i = \bigoplus_{j \geq i} \mathfrak{g}_j$ and $\mathfrak{p} = \mathfrak{g}^0$, $\mathfrak{p}_+ = \mathfrak{g}^1$.

The top-slot \mathfrak{g}_{ν} will play a key role in this talk.

• G: semisimple Lie group, P: parabolic subgroup; $\mathfrak{g} = \mathfrak{g}_{-\nu} \oplus ... \oplus \mathfrak{g}_{\nu}$ with $\mathfrak{g}^i = \bigoplus_{j \geq i} \mathfrak{g}_j$ and $\mathfrak{p} = \mathfrak{g}^0$, $\mathfrak{p}_+ = \mathfrak{g}^1$.

The top-slot \mathfrak{g}_{ν} will play a key role in this talk.

• $(\mathcal{G} \stackrel{\pi}{\to} M, \omega)$ of type (G, P) has sym alg

$$\inf(\mathcal{G},\omega) = \{\xi \in \mathfrak{X}(\mathcal{G})^P : \mathcal{L}_{\xi}\omega = 0\}.$$

• G: semisimple Lie group, P: parabolic subgroup; $\mathfrak{g} = \mathfrak{g}_{-\nu} \oplus ... \oplus \mathfrak{g}_{\nu}$ with $\mathfrak{g}^i = \bigoplus_{j \geq i} \mathfrak{g}_j$ and $\mathfrak{p} = \mathfrak{g}^0$, $\mathfrak{p}_+ = \mathfrak{g}^1$.

The top-slot \mathfrak{g}_{ν} will play a key role in this talk.

• $(\mathcal{G} \stackrel{\pi}{\to} M, \omega)$ of type (G, P) has sym alg

$$\inf(\mathcal{G},\omega) = \{\xi \in \mathfrak{X}(\mathcal{G})^P : \mathcal{L}_{\xi}\omega = 0\}.$$

• (reg/nor) parabolic geometries \leftrightarrow underlying structures.

• G: semisimple Lie group, P: parabolic subgroup; $\mathfrak{g} = \mathfrak{g}_{-\nu} \oplus ... \oplus \mathfrak{g}_{\nu}$ with $\mathfrak{g}^i = \bigoplus_{j \geq i} \mathfrak{g}_j$ and $\mathfrak{p} = \mathfrak{g}^0$, $\mathfrak{p}_+ = \mathfrak{g}^1$.

The top-slot \mathfrak{g}_{ν} will play a key role in this talk.

ullet $(\mathcal{G}\stackrel{\pi}{ o} M,\omega)$ of type (G,P) has sym alg

$$\inf(\mathcal{G},\omega) = \{\xi \in \mathfrak{X}(\mathcal{G})^P : \mathcal{L}_{\xi}\omega = 0\}.$$

- (reg/nor) parabolic geometries ↔ underlying structures.
- harmonic curvature $\kappa_H \in \Gamma\left(\mathcal{G} \times_P \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}\right)$.

• G: semisimple Lie group, P: parabolic subgroup; $\mathfrak{g} = \mathfrak{g}_{-\nu} \oplus ... \oplus \mathfrak{g}_{\nu}$ with $\mathfrak{g}^i = \bigoplus_{j \geq i} \mathfrak{g}_j$ and $\mathfrak{p} = \mathfrak{g}^0$, $\mathfrak{p}_+ = \mathfrak{g}^1$.

The top-slot \mathfrak{g}_{ν} will play a key role in this talk.

ullet $(\mathcal{G}\stackrel{\pi}{ o} M,\omega)$ of type (G,P) has sym alg

$$\inf(\mathcal{G},\omega) = \{\xi \in \mathfrak{X}(\mathcal{G})^P : \mathcal{L}_{\xi}\omega = 0\}.$$

- (reg/nor) parabolic geometries ↔ underlying structures.
- harmonic curvature $\kappa_H \in \Gamma\left(\mathcal{G} \times_P \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}\right)$.

Notation:

- Fix $x \in M$ and fix $u \in \pi^{-1}(x)$.
- $\xi \in \inf(\mathcal{G}, \omega)$ corresponds $\mathbf{X} \in \mathcal{S} := \pi_*(\inf(\mathcal{G}, \omega))$.

Main results: Jet-det of syms of parabolic geometries

Theorem

 \mathcal{S} is 2-jet determined everywhere. If G is simple, then at any $x \in M$ where $\kappa_H(x) \neq 0$, \mathcal{S} is 1-jet determined at x.

Main results: Jet-det of syms of parabolic geometries

$\mathsf{Theorem}$

 \mathcal{S} is 2-jet determined everywhere. If G is simple, then at any $x \in M$ where $\kappa_H(x) \neq 0$, \mathcal{S} is 1-jet determined at x.

This is connected to the following:

Theorem

Given $0 \neq \omega_u(\xi) \in \mathfrak{g}^i \backslash \mathfrak{g}^{i+1}$. Then:

$$i < 0$$
: $j_x^0(\mathbf{X}) \neq 0$ (0-jet determined) $0 \leq i < \nu$: $j_x^0(\mathbf{X}) = 0$, $j_x^1(\mathbf{X}) \neq 0$ (1-jet determined) $i = \nu$: $j_x^1(\mathbf{X}) = 0$, $j_x^2(\mathbf{X}) \neq 0$ (2-jet determined)

Main results: Jet-det of syms of parabolic geometries

Theorem

 \mathcal{S} is 2-jet determined everywhere. If G is simple, then at any $x \in M$ where $\kappa_H(x) \neq 0$, \mathcal{S} is 1-jet determined at x.

This is connected to the following:

Theorem

Given $0 \neq \omega_u(\xi) \in \mathfrak{g}^i \backslash \mathfrak{g}^{i+1}$. Then:

$$i < 0$$
: $j_x^0(\mathbf{X}) \neq 0$ (0-jet determined) $0 \leq i < \nu$: $j_x^0(\mathbf{X}) = 0$, $j_x^1(\mathbf{X}) \neq 0$ (1-jet determined) $i = \nu$: $j_x^1(\mathbf{X}) = 0$, $j_x^2(\mathbf{X}) \neq 0$ (2-jet determined)

IDEA: For 1-jet det, want to show that a certain Tanaka prolongation does not reach the top-slot \mathfrak{g}_{ν} .

Key technical advance: improved Tanaka prolongation result

Main results: Rigidity

Q: If $0 \neq \mathbf{X} \in \mathcal{S}$ is 2-jet det. at x, we must have $\kappa_H(x) = 0$. Can we assert $\kappa_H \equiv 0$ an an open nbd of x?

Main results: Rigidity

Q: If $0 \neq \mathbf{X} \in \mathcal{S}$ is 2-jet det. at x, we must have $\kappa_H(x) = 0$. Can we assert $\kappa_H \equiv 0$ an an open nbd of x?

Let G be simple. (If \mathfrak{g} is real, assume $\mathfrak{g}_{\mathbb{C}}$ is simple.)

Theorem (Torsion-free parabolic geometries)

If $0 \neq \mathbf{X} \in \mathcal{S}$ and $j_x^1(\mathbf{X}) = 0$, i.e. $\omega_u(\xi) \in \mathfrak{g}_{\nu}$, then the geometry is flat on open set $U \subset M$ with $x \in \overline{U}$.

Main results: Rigidity

Q: If $0 \neq \mathbf{X} \in \mathcal{S}$ is 2-jet det. at x, we must have $\kappa_H(x) = 0$. Can we assert $\kappa_H \equiv 0$ an an open nbd of x?

Let G be simple. (If \mathfrak{g} is real, assume $\mathfrak{g}_{\mathbb{C}}$ is simple.)

Theorem (Torsion-free parabolic geometries)

If $0 \neq \mathbf{X} \in \mathcal{S}$ and $j_x^1(\mathbf{X}) = 0$, i.e. $\omega_u(\xi) \in \mathfrak{g}_{\nu}$, then the geometry is flat on open set $U \subset M$ with $x \in \overline{U}$.

Theorem (General parabolic geometries)

Suppose that:

- (i) $\omega_u(\xi)$ lies in the **open** G_0 -orbit of \mathfrak{g}_{ν} .
- (ii) G/P is not $A_{\ell}/P_{s,s+1}$, $2 \le s < \frac{\ell}{2}$ or B_{ℓ}/P_{ℓ} , $\ell \ge 5$ odd.

Then the geometry is flat on an open set $U \subset M$ with $x \in \overline{U}$.

Part 1: Symmetry and Tanaka prolongation

```
Čap–Neusser (2009): Fix u \in \mathcal{G}.
```

• $\omega_u : T_u \mathcal{G} \to \mathfrak{g}$ is injective on $\{\xi_u : \xi \in \mathfrak{inf}(\mathcal{G}, \omega)\}$.

Čap–Neusser (2009): Fix $u \in \mathcal{G}$.

- $\omega_u : T_u \mathcal{G} \to \mathfrak{g}$ is injective on $\{\xi_u : \xi \in \mathfrak{inf}(\mathcal{G}, \omega)\}$.
- $\mathfrak{f}(u) := \omega_u(\mathfrak{inf}(\mathcal{G}, \omega))$, have $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$

Čap–Neusser (2009): Fix $u \in \mathcal{G}$.

- $\omega_u : T_u \mathcal{G} \to \mathfrak{g}$ is injective on $\{\xi_u : \xi \in \mathfrak{inf}(\mathcal{G}, \omega)\}$.
- $\mathfrak{f}(u) := \omega_u(\mathfrak{inf}(\mathcal{G}, \omega))$, have $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$
- regularity $\Rightarrow \mathfrak{f}$ is filtered; $\mathfrak{s}(u) = \operatorname{gr}(\mathfrak{f}(u)) \subset \mathfrak{g}$ graded subalg

Čap–Neusser (2009): Fix $u \in \mathcal{G}$.

- $\omega_u : T_u \mathcal{G} \to \mathfrak{g}$ is injective on $\{\xi_u : \xi \in \mathfrak{inf}(\mathcal{G}, \omega)\}$.
- $\mathfrak{f}(u) := \omega_u(\mathfrak{inf}(\mathcal{G}, \omega))$, have $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$
- regularity $\Rightarrow \mathfrak{f}$ is filtered; $\mathfrak{s}(u) = \operatorname{gr}(\mathfrak{f}(u)) \subset \mathfrak{g}$ graded subalg
- $\mathfrak{s}_0(u) \subset \mathfrak{ann}_{\mathfrak{g}_0}(\kappa_H(u)).$

Čap–Neusser (2009): Fix $u \in \mathcal{G}$.

- $\omega_u : T_u \mathcal{G} \to \mathfrak{g}$ is injective on $\{\xi_u : \xi \in \mathfrak{inf}(\mathcal{G}, \omega)\}$.
- $\mathfrak{f}(u) := \omega_u(\mathfrak{inf}(\mathcal{G}, \omega))$, have $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$
- regularity $\Rightarrow \mathfrak{f}$ is filtered; $\mathfrak{s}(u) = \operatorname{gr}(\mathfrak{f}(u)) \subset \mathfrak{g}$ graded subalg
- $\mathfrak{s}_0(u) \subset \mathfrak{ann}_{\mathfrak{g}_0}(\kappa_H(u)).$

Recall $\kappa_H(u) \in \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$ (completely reducible, so \mathfrak{p}_+ acts trivially.)

Čap–Neusser (2009): Fix $u \in \mathcal{G}$.

- $\omega_u : T_u \mathcal{G} \to \mathfrak{g}$ is injective on $\{\xi_u : \xi \in \mathfrak{inf}(\mathcal{G}, \omega)\}$.
- $\mathfrak{f}(u) := \omega_u(\mathfrak{inf}(\mathcal{G}, \omega))$, have $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$
- regularity $\Rightarrow \mathfrak{f}$ is filtered; $\mathfrak{s}(u) = \operatorname{gr}(\mathfrak{f}(u)) \subset \mathfrak{g}$ graded subalg
- $\mathfrak{s}_0(u) \subset \mathfrak{ann}_{\mathfrak{g}_0}(\kappa_H(u)).$

Recall $\kappa_H(u) \in \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$ (completely reducible, so \mathfrak{p}_+ acts trivially.)

 $\mathsf{Kostant} \Rightarrow \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)} \cong \frac{\ker(\partial)}{\operatorname{im}(\partial)} \cong H^2(\mathfrak{g}_-,\mathfrak{g}) \text{ as } \mathfrak{g}_0\text{-modules}.$

Čap–Neusser (2009): Fix $u \in \mathcal{G}$.

- $\omega_u : T_u \mathcal{G} \to \mathfrak{g}$ is injective on $\{\xi_u : \xi \in \mathfrak{inf}(\mathcal{G}, \omega)\}$.
- $\mathfrak{f}(u) := \omega_u(\mathfrak{inf}(\mathcal{G}, \omega))$, have $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$
- regularity $\Rightarrow \mathfrak{f}$ is filtered; $\mathfrak{s}(u) = \operatorname{gr}(\mathfrak{f}(u)) \subset \mathfrak{g}$ graded subalg
- $\mathfrak{s}_0(u) \subset \mathfrak{ann}_{\mathfrak{g}_0}(\kappa_H(u))$.

Recall $\kappa_H(u) \in \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$ (completely reducible, so \mathfrak{p}_+ acts trivially.)

Kostant $\Rightarrow \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)} \cong \frac{\ker(\partial)}{\operatorname{im}(\partial)} \cong H^2(\mathfrak{g}_-,\mathfrak{g})$ as \mathfrak{g}_0 -modules.

Regularity $\Rightarrow \kappa_H(u) \in H^2_+(\mathfrak{g}_-,\mathfrak{g}).$

Definition (Tanaka prolongation)

Let $\mathfrak{a}_0 \subset \mathfrak{g}_0$ be a subalg. Define $\mathfrak{a} \subset \mathfrak{g}$ by $\mathfrak{a}_{\leq 0} = \mathfrak{g}_{\leq 0}$ and $\mathfrak{a}_k = \{X \in \mathfrak{g}_k \mid [X, \mathfrak{g}_{-1}] \subset \mathfrak{a}_{k-1}\}$ for k > 0. Write $\mathfrak{a} = \mathsf{pr}^{\mathfrak{g}}(\mathfrak{g}_-, \mathfrak{a}_0)$.

Definition (Tanaka prolongation)

Let $\mathfrak{a}_0 \subset \mathfrak{g}_0$ be a subalg. Define $\mathfrak{a} \subset \mathfrak{g}$ by $\mathfrak{a}_{\leq 0} = \mathfrak{g}_{\leq 0}$ and $\mathfrak{a}_k = \{X \in \mathfrak{g}_k \mid [X, \mathfrak{g}_{-1}] \subset \mathfrak{a}_{k-1}\}$ for k > 0. Write $\mathfrak{a} = \mathsf{pr}^\mathfrak{g}(\mathfrak{g}_-, \mathfrak{a}_0)$.

FACT: This is equivalent to $\mathfrak{a}_k = \{X \in \mathfrak{g}_k \mid \operatorname{ad}_{\mathfrak{g}_{-1}}^k(X) \in \mathfrak{a}_0\}.$

Definition (Tanaka prolongation)

Let $\mathfrak{a}_0 \subset \mathfrak{g}_0$ be a subalg. Define $\mathfrak{a} \subset \mathfrak{g}$ by $\mathfrak{a}_{\leq 0} = \mathfrak{g}_{\leq 0}$ and $\mathfrak{a}_k = \{X \in \mathfrak{g}_k \mid [X, \mathfrak{g}_{-1}] \subset \mathfrak{a}_{k-1}\}$ for k > 0. Write $\mathfrak{a} = \mathsf{pr}^\mathfrak{g}(\mathfrak{g}_-, \mathfrak{a}_0)$.

FACT: This is equivalent to $\mathfrak{a}_k = \{X \in \mathfrak{g}_k \mid \operatorname{ad}_{\mathfrak{g}_{-1}}^k(X) \in \mathfrak{a}_0\}$. Notation: Given $\phi \in H^2_+(\mathfrak{g}_-,\mathfrak{g})$, let $\mathfrak{a}^\phi := \operatorname{pr}^\mathfrak{g}(\mathfrak{g}_-,\mathfrak{ann}(\phi))$.

Definition (Tanaka prolongation)

Let $\mathfrak{a}_0 \subset \mathfrak{g}_0$ be a subalg. Define $\mathfrak{a} \subset \mathfrak{g}$ by $\mathfrak{a}_{\leq 0} = \mathfrak{g}_{\leq 0}$ and $\mathfrak{a}_k = \{X \in \mathfrak{g}_k \mid [X, \mathfrak{g}_{-1}] \subset \mathfrak{a}_{k-1}\}$ for k > 0. Write $\mathfrak{a} = \mathsf{pr}^\mathfrak{g}(\mathfrak{g}_-, \mathfrak{a}_0)$.

FACT: This is equivalent to $\mathfrak{a}_k = \{X \in \mathfrak{g}_k \mid \operatorname{ad}_{\mathfrak{g}_{-1}}^k(X) \in \mathfrak{a}_0\}$. Notation: Given $\phi \in H^2_+(\mathfrak{g}_-,\mathfrak{g})$, let $\mathfrak{a}^\phi := \operatorname{pr}^{\mathfrak{g}}(\mathfrak{g}_-,\mathfrak{ann}(\phi))$.

Theorem (Prolongation does not reach the last level)

If $\mathfrak g$ is simple and $0 \neq \phi \in H^2_+(\mathfrak g_-,\mathfrak g)$, then $\mathfrak a_{\nu}^{\phi} = 0$.

Definition (Tanaka prolongation)

Let $\mathfrak{a}_0 \subset \mathfrak{g}_0$ be a subalg. Define $\mathfrak{a} \subset \mathfrak{g}$ by $\mathfrak{a}_{\leq 0} = \mathfrak{g}_{\leq 0}$ and $\mathfrak{a}_k = \{X \in \mathfrak{g}_k \mid [X, \mathfrak{g}_{-1}] \subset \mathfrak{a}_{k-1}\}$ for k > 0. Write $\mathfrak{a} = \mathsf{pr}^\mathfrak{g}(\mathfrak{g}_-, \mathfrak{a}_0)$.

FACT: This is equivalent to $\mathfrak{a}_k = \{X \in \mathfrak{g}_k \mid \operatorname{ad}_{\mathfrak{g}_{-1}}^k(X) \in \mathfrak{a}_0\}$. Notation: Given $\phi \in H^2_+(\mathfrak{g}_-,\mathfrak{g})$, let $\mathfrak{a}^\phi := \operatorname{pr}^{\mathfrak{g}}(\mathfrak{g}_-,\mathfrak{ann}(\phi))$.

Theorem (Prolongation does not reach the last level)

If $\mathfrak g$ is simple and $0 \neq \phi \in H^2_+(\mathfrak g_-,\mathfrak g)$, then $\mathfrak a_\nu^\phi = 0$.

Example (K.-T. (2014)) Geometry $H_+^2(\mathfrak{g}_-,\mathfrak{g})$ Result for $0 \neq \phi \in H_+^2$ (2,3,5)-geometry $\mathfrak{a}_+^{\phi}=0$

Definition (Tanaka prolongation)

Let $\mathfrak{a}_0 \subset \mathfrak{g}_0$ be a subalg. Define $\mathfrak{a} \subset \mathfrak{g}$ by $\mathfrak{a}_{\leq 0} = \mathfrak{g}_{\leq 0}$ and $\mathfrak{a}_k = \{X \in \mathfrak{g}_k \mid [X, \mathfrak{g}_{-1}] \subset \mathfrak{a}_{k-1}\}$ for k > 0. Write $\mathfrak{a} = \mathsf{pr}^\mathfrak{g}(\mathfrak{g}_-, \mathfrak{a}_0)$.

FACT: This is equivalent to $\mathfrak{a}_k = \{X \in \mathfrak{g}_k \mid \operatorname{ad}_{\mathfrak{g}_{-1}}^k(X) \in \mathfrak{a}_0\}$. Notation: Given $\phi \in H^2_+(\mathfrak{g}_-,\mathfrak{g})$, let $\mathfrak{a}^\phi := \operatorname{pr}^{\mathfrak{g}}(\mathfrak{g}_-,\mathfrak{ann}(\phi))$.

Theorem (Prolongation does not reach the last level)

If $\mathfrak g$ is simple and $0 \neq \phi \in H^2_+(\mathfrak g_-,\mathfrak g)$, then $\mathfrak a_\nu^\phi = 0$.

Example (KT. (2014))		
Geometry	$H^2_+(\mathfrak{g},\mathfrak{g})$	Result for $0 \neq \phi \in H^2_+$
(2,3,5)-geometry	-8 4 ★	$\mathfrak{a}_+^\phi=0$
torsion-free pairs of 2nd order ODE	0 -4 4	$\mathfrak{a}^\phi_{\geq 2} = 0$

K.-T. (2014): Let $u \in \mathcal{G}$ be a regular point, i.e. $\dim(\mathfrak{s}_i(u))$ are locally constant.

K.-T. (2014): Let $u \in \mathcal{G}$ be a regular point, i.e. $\dim(\mathfrak{s}_i(u))$ are locally constant. We proved $[\mathfrak{s}_i(u),\mathfrak{g}_{-1}] \subset \mathfrak{s}_{i-1}(u)$, so

$$\mathfrak{s}(u)\subset \mathsf{pr}^{\mathfrak{g}}(\mathfrak{g}_{-},\mathfrak{s}_{0}(u))\subset \mathfrak{a}^{\kappa_{H}(u)}.$$

K.-T. (2014): Let $u \in \mathcal{G}$ be a regular point, i.e. $\dim(\mathfrak{s}_i(u))$ are locally constant. We proved $[\mathfrak{s}_i(u),\mathfrak{g}_{-1}] \subset \mathfrak{s}_{i-1}(u)$, so

$$\mathfrak{s}(u) \subset \operatorname{pr}^{\mathfrak{g}}(\mathfrak{g}_{-},\mathfrak{s}_{0}(u)) \subset \mathfrak{a}^{\kappa_{H}(u)}.$$

The set of regular points is open and dense, so we get the submax sym bound $\mathfrak{S} \leq \mathfrak{U} := \max\{\dim(\mathfrak{a}^{\phi}) : 0 \neq \phi \in H^2_+(\mathfrak{g}_-,\mathfrak{g})\}.$

K.-T. (2014): Let $u \in \mathcal{G}$ be a regular point, i.e. $\dim(\mathfrak{s}_i(u))$ are locally constant. We proved $[\mathfrak{s}_i(u),\mathfrak{g}_{-1}] \subset \mathfrak{s}_{i-1}(u)$, so

$$\mathfrak{s}(u) \subset \operatorname{pr}^{\mathfrak{g}}(\mathfrak{g}_{-},\mathfrak{s}_{0}(u)) \subset \mathfrak{a}^{\kappa_{H}(u)}.$$

The set of regular points is open and dense, so we get the submax sym bound $\mathfrak{S} \leq \mathfrak{U} := \max\{\dim(\mathfrak{a}^{\phi}) : 0 \neq \phi \in H^2_+(\mathfrak{g}_-,\mathfrak{g})\}.$

Key advance: Can drop the regular point assumption.

Theorem

Fix any $u \in \mathcal{G}$. Then $\mathfrak{s}(u) \subset \mathfrak{a}^{\kappa_H(u)}$.

K.-T. (2014): Let $u \in \mathcal{G}$ be a regular point, i.e. $\dim(\mathfrak{s}_i(u))$ are locally constant. We proved $[\mathfrak{s}_i(u),\mathfrak{g}_{-1}] \subset \mathfrak{s}_{i-1}(u)$, so

$$\mathfrak{s}(u) \subset \operatorname{pr}^{\mathfrak{g}}(\mathfrak{g}_{-},\mathfrak{s}_{0}(u)) \subset \mathfrak{a}^{\kappa_{H}(u)}.$$

The set of regular points is open and dense, so we get the submax sym bound $\mathfrak{S} \leq \mathfrak{U} := \max\{\dim(\mathfrak{a}^{\phi}) : 0 \neq \phi \in H^2_+(\mathfrak{g}_-,\mathfrak{g})\}.$

Key advance: Can drop the regular point assumption.

Theorem

Fix any $u \in \mathcal{G}$. Then $\mathfrak{s}(u) \subset \mathfrak{a}^{\kappa_H(u)}$.

- $\mathfrak{S} \leq \mathfrak{U}$ is immediate.
- If \mathfrak{g} is simple and $\kappa_H(u) \neq 0$, then $\mathfrak{s}_{\nu}(u) = 0$ $\Rightarrow j_x^1(\mathbf{X}) \neq 0$, $\forall \mathbf{X} \in \mathcal{S}$.

Reformulating the Tanaka prolongation result

Let $\mathcal{A}M = \mathcal{G} \times_P \mathfrak{g}$. On $\Gamma(\mathcal{A}M) \cong \mathfrak{X}(\mathcal{G})^P$, have algebraic bracket $\{\cdot,\cdot\}$ and geometric bracket $[\cdot,\cdot]$.

Reformulating the Tanaka prolongation result

Let $\mathcal{A}M = \mathcal{G} \times_P \mathfrak{g}$. On $\Gamma(\mathcal{A}M) \cong \mathfrak{X}(\mathcal{G})^P$, have algebraic bracket $\{\cdot,\cdot\}$ and geometric bracket $[\cdot,\cdot]$.

Theorem

Fix $u \in \mathcal{G}$, sym s, $s(u) \in \mathfrak{g}^k \subset \mathfrak{p}_+$, and $t_j \in \Gamma(\mathcal{A}^{-i_j}M)$ with $k - i_1 - ... - i_n \geq 0$. Then

$$\{t_n, \{..., \{t_1, s\}...\}\}(u) \cdot \kappa_H(u) = 0.$$

Let $\mathcal{A}M = \mathcal{G} \times_{P} \mathfrak{g}$. On $\Gamma(\mathcal{A}M) \cong \mathfrak{X}(\mathcal{G})^{P}$, have algebraic bracket $\{\cdot,\cdot\}$ and geometric bracket $[\cdot,\cdot]$.

Theorem

Fix $u \in \mathcal{G}$, sym s, $s(u) \in \mathfrak{g}^k \subset \mathfrak{p}_+$, and $t_j \in \Gamma(\mathcal{A}^{-i_j}M)$ with $k - i_1 - ... - i_n \geq 0$. Then

$$\{t_n,\{...,\{t_1,s\}...\}\}(u)\cdot \kappa_H(u)=0.$$

For any natural bundle $E = \mathcal{G} \times_P \mathbb{E}$, have fundamental derivative $D : \Gamma(\mathcal{A}M) \times \Gamma(E) \to \Gamma(E)$. Key properties:

Let $\mathcal{A}M = \mathcal{G} \times_P \mathfrak{g}$. On $\Gamma(\mathcal{A}M) \cong \mathfrak{X}(\mathcal{G})^P$, have algebraic bracket $\{\cdot,\cdot\}$ and geometric bracket $[\cdot,\cdot]$.

$\mathsf{Theorem}$

Fix $u \in \mathcal{G}$, sym s, $s(u) \in \mathfrak{g}^k \subset \mathfrak{p}_+$, and $t_j \in \Gamma(\mathcal{A}^{-i_j}M)$ with $k - i_1 - ... - i_n \geq 0$. Then

$$\{t_n,\{...,\{t_1,s\}...\}\}(u)\cdot \kappa_H(u)=0.$$

For any natural bundle $E = \mathcal{G} \times_P \mathbb{E}$, have fundamental derivative $D : \Gamma(\mathcal{A}M) \times \Gamma(E) \to \Gamma(E)$. Key properties:

• If $r(u) \in \mathfrak{p}$, then $(D_r t)(u) = -r(u) \cdot t(u)$, where $t \in \Gamma(E)$.

Let $\mathcal{A}M = \mathcal{G} \times_{P} \mathfrak{g}$. On $\Gamma(\mathcal{A}M) \cong \mathfrak{X}(\mathcal{G})^{P}$, have algebraic bracket $\{\cdot,\cdot\}$ and geometric bracket $[\cdot,\cdot]$.

$\mathsf{Theorem}$

Fix $u \in \mathcal{G}$, sym s, $s(u) \in \mathfrak{g}^k \subset \mathfrak{p}_+$, and $t_j \in \Gamma(\mathcal{A}^{-i_j}M)$ with $k - i_1 - ... - i_n \geq 0$. Then

$$\{t_n,\{...,\{t_1,s\}...\}\}(u)\cdot \kappa_H(u)=0.$$

For any natural bundle $E = \mathcal{G} \times_P \mathbb{E}$, have fundamental derivative $D : \Gamma(\mathcal{A}M) \times \Gamma(E) \to \Gamma(E)$. Key properties:

- If $r(u) \in \mathfrak{p}$, then $(D_r t)(u) = -r(u) \cdot t(u)$, where $t \in \Gamma(E)$.
- $s \text{ sym} \Rightarrow D_s \kappa_H = 0$, $D_s t = [s, t]$ for $t \in \Gamma(\mathcal{A}M)$.

Let $\mathcal{A}M = \mathcal{G} \times_{P} \mathfrak{g}$. On $\Gamma(\mathcal{A}M) \cong \mathfrak{X}(\mathcal{G})^{P}$, have algebraic bracket $\{\cdot,\cdot\}$ and geometric bracket $[\cdot,\cdot]$.

$\mathsf{Theorem}$

Fix $u \in \mathcal{G}$, sym s, $s(u) \in \mathfrak{g}^k \subset \mathfrak{p}_+$, and $t_j \in \Gamma(\mathcal{A}^{-i_j}M)$ with $k - i_1 - ... - i_n \geq 0$. Then

$$\{t_n, \{..., \{t_1, s\}...\}\}(u) \cdot \kappa_H(u) = 0.$$

For any natural bundle $E = \mathcal{G} \times_P \mathbb{E}$, have fundamental derivative $D : \Gamma(\mathcal{A}M) \times \Gamma(E) \to \Gamma(E)$. Key properties:

- If $r(u) \in \mathfrak{p}$, then $(D_r t)(u) = -r(u) \cdot t(u)$, where $t \in \Gamma(E)$.
- $s \text{ sym} \Rightarrow D_s \kappa_H = 0$, $D_s t = [s, t]$ for $t \in \Gamma(AM)$.
- Thus, if s sym with $s(u) \in \mathfrak{p}$, then $[s, t](u) = -\{s, t\}(u)$.

Recall:
$$\kappa_H \in \Gamma\left(\mathcal{G} \times_P \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}\right)$$
, \mathfrak{p}_+ -action on $\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$ is trivial.

Recall:
$$\kappa_H \in \Gamma\left(\mathcal{G} \times_P \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}\right)$$
, \mathfrak{p}_+ -action on $\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$ is trivial.

Let
$$s(u) \in \mathfrak{g}^{k \geq 1}$$
 and $t \in \Gamma(\mathcal{A}^{-k}M)$. WTS: $standardown \{s, t\}(u) \cdot \kappa_H(u) = 0$.

Recall:
$$\kappa_H \in \Gamma\left(\mathcal{G} \times_P \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}\right)$$
, \mathfrak{p}_+ -action on $\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$ is trivial.

Let
$$s(u) \in \mathfrak{g}^{k \geq 1}$$
 and $t \in \Gamma(\mathcal{A}^{-k}M)$. WTS: $slip [s,t](u) \cdot \kappa_H(u) = 0$.

$$0 = D_s \kappa_H \quad \Rightarrow \quad 0 = D_t D_s \kappa_H = D_s D_t \kappa_H + D_{[t,s]} \kappa_H. \quad (*)$$

Recall:
$$\kappa_H \in \Gamma\left(\mathcal{G} \times_P \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}\right)$$
, \mathfrak{p}_+ -action on $\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$ is trivial.

Let
$$s(u) \in \mathfrak{g}^{k \geq 1}$$
 and $t \in \Gamma(\mathcal{A}^{-k}M)$. WTS: $slash subseteq solution $slash subseteq subs$$

•
$$(D_s D_t \kappa_H)(u) = -s(u) \cdot (D_t \kappa_H)(u) = 0$$

Recall:
$$\kappa_H \in \Gamma\left(\mathcal{G} \times_P \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}\right)$$
, \mathfrak{p}_+ -action on $\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$ is trivial.

Let
$$s(u) \in \mathfrak{g}^{k \geq 1}$$
 and $t \in \Gamma(\mathcal{A}^{-k}M)$. WTS: $slip [s,t](u) \cdot \kappa_H(u) = 0$.

$$0 = D_s \kappa_H \quad \Rightarrow \quad 0 = D_t D_s \kappa_H = D_s D_t \kappa_H + D_{[t,s]} \kappa_H. \quad (*)$$

- $(D_s D_t \kappa_H)(u) = -s(u) \cdot (D_t \kappa_H)(u) = 0$
- $\bullet \ [t,s](u) = \{s,t\}(u) \in \mathfrak{g}^0 = \mathfrak{p}$

Recall:
$$\kappa_H \in \Gamma\left(\mathcal{G} \times_P \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}\right)$$
, \mathfrak{p}_+ -action on $\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$ is trivial.

Let
$$s(u) \in \mathfrak{g}^{k \geq 1}$$
 and $t \in \Gamma(\mathcal{A}^{-k}M)$. WTS: $standskip \{s,t\}(u) \cdot \kappa_H(u) = 0$.

$$0 = D_s \kappa_H \quad \Rightarrow \quad 0 = D_t D_s \kappa_H = D_s D_t \kappa_H + D_{[t,s]} \kappa_H. \quad (*)$$

- $(D_s D_t \kappa_H)(u) = -s(u) \cdot (D_t \kappa_H)(u) = 0$
- $\bullet \ [t,s](u) = \{s,t\}(u) \in \mathfrak{g}^0 = \mathfrak{p}$
- $\bullet (*) \Rightarrow 0 = D_{[t,s]} \kappa_H = -\{s,t\}(u) \cdot \kappa_H(u)$

Recall:
$$\kappa_H \in \Gamma\left(\mathcal{G} \times_P \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}\right)$$
, \mathfrak{p}_+ -action on $\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$ is trivial.

Let
$$s(u) \in \mathfrak{g}^{k \geq 1}$$
 and $t \in \Gamma(\mathcal{A}^{-k}M)$. WTS: $slip \left[\{s, t\}(u) \cdot \kappa_H(u) = 0 \right]$.

$$0 = D_s \kappa_H \quad \Rightarrow \quad 0 = D_t D_s \kappa_H = D_s D_t \kappa_H + D_{[t,s]} \kappa_H. \quad (*)$$

- $(D_s D_t \kappa_H)(u) = -s(u) \cdot (D_t \kappa_H)(u) = 0$
- $\bullet \ [t,s](u) = \{s,t\}(u) \in \mathfrak{g}^0 = \mathfrak{p}$
- $\bullet (*) \Rightarrow 0 = D_{[t,s]} \kappa_H = -\{s,t\}(u) \cdot \kappa_H(u)$

|1|-graded case: ✓.

Recall:
$$\kappa_H \in \Gamma\left(\mathcal{G} \times_P \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}\right)$$
, \mathfrak{p}_+ -action on $\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}$ is trivial.

Let
$$s(u) \in \mathfrak{g}^{k \geq 1}$$
 and $t \in \Gamma(\mathcal{A}^{-k}M)$. WTS: $\left[\{s, t\}(u) \cdot \kappa_H(u) = 0 \right]$. $0 = D_s \kappa_H \implies 0 = D_t D_s \kappa_H = D_s D_t \kappa_H + D_{[t,s]} \kappa_H$. (*)

•
$$(D_s D_t \kappa_H)(u) = -s(u) \cdot (D_t \kappa_H)(u) = 0$$

$$\bullet \ [t,s](u) = \{s,t\}(u) \in \mathfrak{g}^0 = \mathfrak{p}$$

$$\bullet (*) \Rightarrow 0 = D_{[t,s]}\kappa_H = -\{s,t\}(u) \cdot \kappa_H(u)$$

|1|-graded case: \checkmark . General case is a complicated induction. Have to contend with identities like

$$[t_2,[t_1,s]] = D_{t_2}[t_1,s] - D_{[t_1,s]}t_2 - \kappa(\Pi(t_2),\Pi([t_1,s])) + \{t_2,[t_1,s]\}.$$

Let
$$s(u) \in \mathfrak{g}^2$$
 and $t_1, t_2 \in \Gamma(\mathcal{A}^{-1}M)$. From $0 = D_{t_2}D_{t_1}D_s\kappa_H$,

$$(*) \ 0 = D_{[t_2,[t_1,s]]} \kappa_H + D_{[t_1,s]} D_{t_2} \kappa_H + D_{[t_2,s]} D_{t_1} \kappa_H + D_s D_{t_2} D_{t_1} \kappa_H.$$

Let
$$s(u) \in \mathfrak{g}^2$$
 and $t_1, t_2 \in \Gamma(\mathcal{A}^{-1}M)$. From $0 = D_{t_2}D_{t_1}D_s\kappa_H$,

(*)
$$0 = D_{[t_2,[t_1,s]]}\kappa_H + D_{[t_1,s]}D_{t_2}\kappa_H + D_{[t_2,s]}D_{t_1}\kappa_H + D_sD_{t_2}D_{t_1}\kappa_H.$$

$$[t_j,s](u) = -\{t_j,s\}(u) \in \mathfrak{p}_+, \text{ so } (*) \Rightarrow 0 = D_{[t_2,[t_1,s]]}\kappa_H.$$

Let
$$s(u) \in \mathfrak{g}^2$$
 and $t_1, t_2 \in \Gamma(\mathcal{A}^{-1}M)$. From $0 = D_{t_2}D_{t_1}D_s\kappa_H$,

(*)
$$0 = D_{[t_2,[t_1,s]]}\kappa_H + D_{[t_1,s]}D_{t_2}\kappa_H + D_{[t_2,s]}D_{t_1}\kappa_H + D_sD_{t_2}D_{t_1}\kappa_H.$$

$$[t_j, s](u) = -\{t_j, s\}(u) \in \mathfrak{p}_+, \text{ so } (*) \Rightarrow 0 \stackrel{.}{=} D_{[t_2, [t_1, s]]} \kappa_H.$$

$$\begin{split} [t_2,[t_1,s]] &= D_{t_2}[t_1,s] - D_{[t_1,s]}t_2 - \kappa(\Pi(t_2),\Pi([t_1,s])) + \{t_2,[t_1,s]\} \\ &\doteq D_{t_2}[t_1,s] = -D_{t_2}D_st_1 \doteq -D_sD_{t_2}t_1 - D_{[t_2,s]}t_1 \\ &\doteq -D_sD_{t_2}t_1 + \{\{s,t_2\},t_1\} \end{split}$$

Let
$$s(u) \in \mathfrak{g}^2$$
 and $t_1, t_2 \in \Gamma(\mathcal{A}^{-1}M)$. From $0 = D_{t_2}D_{t_1}D_s\kappa_H$,

(*)
$$0 = D_{[t_2,[t_1,s]]}\kappa_H + D_{[t_1,s]}D_{t_2}\kappa_H + D_{[t_2,s]}D_{t_1}\kappa_H + D_sD_{t_2}D_{t_1}\kappa_H.$$

$$[t_j, s](u) = -\{t_j, s\}(u) \in \mathfrak{p}_+, \text{ so } (*) \Rightarrow 0 \stackrel{.}{=} D_{[t_2, [t_1, s]]} \kappa_H.$$

$$\begin{split} [t_2,[t_1,s]] &= D_{t_2}[t_1,s] - D_{[t_1,s]}t_2 - \kappa(\Pi(t_2),\Pi([t_1,s])) + \{t_2,[t_1,s]\} \\ &\doteq D_{t_2}[t_1,s] = -D_{t_2}D_st_1 \doteq -D_sD_{t_2}t_1 - D_{[t_2,s]}t_1 \\ &\doteq -D_sD_{t_2}t_1 + \{\{s,t_2\},t_1\} \end{split}$$

•
$$(D_s D_{t_2} t_1)(u) \doteq -s(u) \cdot (D_{t_2} t_1)(u) \in \mathfrak{g}^{2-1} \subset \mathfrak{p}_+.$$

Let
$$s(u) \in \mathfrak{g}^2$$
 and $t_1, t_2 \in \Gamma(\mathcal{A}^{-1}M)$. From $0 = D_{t_2}D_{t_1}D_s\kappa_H$,

(*)
$$0 = D_{[t_2,[t_1,s]]}\kappa_H + D_{[t_1,s]}D_{t_2}\kappa_H + D_{[t_2,s]}D_{t_1}\kappa_H + D_sD_{t_2}D_{t_1}\kappa_H.$$

$$[t_j,s](u) = -\{t_j,s\}(u) \in \mathfrak{p}_+, \text{ so } (*) \Rightarrow 0 \stackrel{.}{=} D_{[t_2,[t_1,s]]} \kappa_H.$$

$$\begin{split} [t_2,[t_1,s]] &= D_{t_2}[t_1,s] - D_{[t_1,s]}t_2 - \kappa(\Pi(t_2),\Pi([t_1,s])) + \{t_2,[t_1,s]\} \\ &\doteq D_{t_2}[t_1,s] = -D_{t_2}D_st_1 \doteq -D_sD_{t_2}t_1 - D_{[t_2,s]}t_1 \\ &\doteq -D_sD_{t_2}t_1 + \{\{s,t_2\},t_1\} \end{split}$$

- $(D_s D_{t_2} t_1)(u) \doteq -s(u) \cdot (D_{t_2} t_1)(u) \in \mathfrak{g}^{2-1} \subset \mathfrak{p}_+$.
- $\{s, \{t_1, t_2\}\}(u) \cdot \kappa_H(u) = 0$ (apply previous case).

Let
$$s(u) \in \mathfrak{g}^2$$
 and $t_1, t_2 \in \Gamma(\mathcal{A}^{-1}M)$. From $0 = D_{t_2}D_{t_1}D_s\kappa_H$,

(*)
$$0 = D_{[t_2,[t_1,s]]}\kappa_H + D_{[t_1,s]}D_{t_2}\kappa_H + D_{[t_2,s]}D_{t_1}\kappa_H + D_sD_{t_2}D_{t_1}\kappa_H.$$

$$[t_j,s](u) = -\{t_j,s\}(u) \in \mathfrak{p}_+, \text{ so } (*) \Rightarrow 0 \stackrel{.}{=} D_{[t_2,[t_1,s]]} \kappa_H.$$

$$\begin{split} [t_2,[t_1,s]] &= D_{t_2}[t_1,s] - D_{[t_1,s]}t_2 - \kappa(\Pi(t_2),\Pi([t_1,s])) + \{t_2,[t_1,s]\} \\ &\doteq D_{t_2}[t_1,s] = -D_{t_2}D_st_1 \doteq -D_sD_{t_2}t_1 - D_{[t_2,s]}t_1 \\ &\doteq -D_sD_{t_2}t_1 + \{\{s,t_2\},t_1\} \end{split}$$

- $(D_s D_{t_2} t_1)(u) \doteq -s(u) \cdot (D_{t_2} t_1)(u) \in \mathfrak{g}^{2-1} \subset \mathfrak{p}_+$.
- $\{s, \{t_1, t_2\}\}(u) \cdot \kappa_H(u) = 0$ (apply previous case).
- $[t_2, [t_1, s]](u) \{t_2, \{t_1, s\}\}(u) = 0 \mod \mathfrak{ann}_{\mathfrak{p}}(\kappa_H(u)).$

Part 2: Structure of \mathfrak{g}_{ν} and rigidity

 $X \in \mathcal{S}$ has higher-order fixed point at x if $0 \neq E := \omega_u(\xi) \in \mathfrak{p}_+$. Jacobson-Morozov \Rightarrow std \mathfrak{sl}_2 -triple $\{F, H, E\}$.

 $\mathbf{X} \in \mathcal{S}$ has higher-order fixed point at x if $0 \neq E := \omega_u(\xi) \in \mathfrak{p}_+$. Jacobson-Morozov \Rightarrow std \mathfrak{sl}_2 -triple $\{F, H, E\}$. "Good" \mathfrak{sl}_2 -triple:

- (CM.1) $H \in \mathfrak{g}_0$;
- (CM.2) Eigenvalues of H on \mathfrak{g}_- are ≤ 0 , the gen. eigenspace for eigenv. with real part zero is $C_{\mathfrak{g}}^-(E)=\{X\in\mathfrak{g}_-\,|\,[X,E]=0\},$ and $\operatorname{ad}_H|_{C_{\mathfrak{g}}^-(E)}=0$;
- (CM.3) H acts s.s. on $H^2_+(\mathfrak{g}_-,\mathfrak{g})$ and all eigenvalues are ≥ 0 .

 $\mathbf{X} \in \mathcal{S}$ has higher-order fixed point at x if $0 \neq E := \omega_u(\xi) \in \mathfrak{p}_+$. Jacobson–Morozov \Rightarrow std \mathfrak{sl}_2 -triple $\{F, H, E\}$. "Good" \mathfrak{sl}_2 -triple:

- (CM.1) $H \in \mathfrak{g}_0$;
- (CM.2) Eigenvalues of H on \mathfrak{g}_- are ≤ 0 , the gen. eigenspace for eigenv. with real part zero is $C_{\mathfrak{g}}^-(E)=\{X\in\mathfrak{g}_-\,|\,[X,E]=0\}$, and $\operatorname{ad}_H|_{C_{\mathfrak{g}}^-(E)}=0$;
- (CM.3) H acts s.s. on $H^2_+(\mathfrak{g}_-,\mathfrak{g})$ and all eigenvalues are ≥ 0 .

Theorem (Čap-Melnick (2013))

Suppose (CM.1-3) hold, $\kappa_H(x)=0$, and $v=\pi_*(\omega_u^{-1}(F))\in T_xM$. Then $\exists \gamma: (-\epsilon,+\epsilon)\to M$, $\gamma(0)=x$, $\gamma'(0)=v$, preserved by flow of **X** & on which it acts by proj. transf. Let $\gamma^+=\gamma((0,+\epsilon))\subset M$, $\exists nbd\ U$ of γ^+ , $\bar U\ni x$, on which the geometry is flat.

 $\mathbf{X} \in \mathcal{S}$ has higher-order fixed point at x if $0 \neq E := \omega_u(\xi) \in \mathfrak{p}_+$. Jacobson–Morozov \Rightarrow std \mathfrak{sl}_2 -triple $\{F, H, E\}$. "Good" \mathfrak{sl}_2 -triple:

- (CM.1) $H \in \mathfrak{g}_0$;
- (CM.2) Eigenvalues of H on \mathfrak{g}_- are ≤ 0 , the gen. eigenspace for eigenv. with real part zero is $C_{\mathfrak{g}}^-(E)=\{X\in\mathfrak{g}_-\,|\,[X,E]=0\}$, and $\operatorname{ad}_H|_{C_{\mathfrak{g}}^-(E)}=0$;
- (CM.3) H acts s.s. on $H^2_+(\mathfrak{g}_-,\mathfrak{g})$ and all eigenvalues are ≥ 0 .

Theorem (Čap-Melnick (2013))

Suppose (CM.1-3) hold, $\kappa_H(x)=0$, and $v=\pi_*(\omega_u^{-1}(F))\in T_xM$. Then $\exists \gamma: (-\epsilon,+\epsilon)\to M$, $\gamma(0)=x$, $\gamma'(0)=v$, preserved by flow of **X** & on which it acts by proj. transf. Let $\gamma^+=\gamma((0,+\epsilon))\subset M$, $\exists nbd\ U$ of γ^+ , $\bar U\ni x$, on which the geometry is flat.

Melnick-Neusser (2015): Investigated the |1|-graded case.

 $\mathbf{X} \in \mathcal{S}$ has higher-order fixed point at x if $0 \neq E := \omega_u(\xi) \in \mathfrak{p}_+$. Jacobson–Morozov \Rightarrow std \mathfrak{sl}_2 -triple $\{F, H, E\}$. "Good" \mathfrak{sl}_2 -triple:

- (CM.1) $H \in \mathfrak{g}_0$;
- (CM.2) Eigenvalues of H on \mathfrak{g}_- are ≤ 0 , the gen. eigenspace for eigenv. with real part zero is $C_{\mathfrak{g}}^-(E)=\{X\in\mathfrak{g}_-\,|\,[X,E]=0\}$, and $\operatorname{ad}_H|_{C_{\mathfrak{g}}^-(E)}=0$;
- (CM.3) H acts s.s. on $H^2_+(\mathfrak{g}_-,\mathfrak{g})$ and all eigenvalues are ≥ 0 .

Theorem (Čap-Melnick (2013))

Suppose (CM.1-3) hold, $\kappa_H(x)=0$, and $v=\pi_*(\omega_u^{-1}(F))\in T_xM$. Then $\exists \gamma: (-\epsilon,+\epsilon)\to M$, $\gamma(0)=x$, $\gamma'(0)=v$, preserved by flow of **X** & on which it acts by proj. transf. Let $\gamma^+=\gamma((0,+\epsilon))\subset M$, $\exists nbd\ U$ of γ^+ , $\bar U\ni x$, on which the geometry is flat.

Melnick-Neusser (2015): Investigated the |1|-graded case. Our study: General grading, but suppose $E \in \mathfrak{g}_{\nu}$ ("top slot").

Structure theory for the top slot $\mathfrak{g}_{ u}$

Definition

R: reductive, V: R-irrep, $V \subset \mathbb{P}(V)$ closed orbit. If the only R-orbits are $Sec_k(V) \setminus Sec_{k-1}(V)$, then V is sub-cominuscule.

Structure theory for the top slot \mathfrak{g}_{ν}

Definition

R: reductive, V: R-irrep, $V \subset \mathbb{P}(V)$ closed orbit. If the only R-orbits are $Sec_k(V) \setminus Sec_{k-1}(V)$, then V is sub-cominuscule.

Landsberg–Manivel (2003) observed that irred. |1|-graded G/P $\Rightarrow \mathfrak{g}_1$ is a sub-cominuscule G_0 -module.

Structure theory for the top slot $\mathfrak{g}_{ u}$

Definition

R: reductive, V: R-irrep, $V \subset \mathbb{P}(V)$ closed orbit. If the only R-orbits are $Sec_k(V) \setminus Sec_{k-1}(V)$, then V is sub-cominuscule.

Landsberg–Manivel (2003) observed that irred. |1|-graded G/P $\Rightarrow \mathfrak{g}_1$ is a sub-cominuscule G_0 -module.

G/P	G_0^{ss}	Sub-cominuscule variety $\mathcal{V} \subset \mathbb{P}(\mathfrak{g}_1)$
A_{ℓ}/P_{k}	$A_{k-1} \times A_{\ell-k}$	$Seg(\mathbb{P}^{k-1} imes\mathbb{P}^{\ell-k})\hookrightarrow \mathbb{P}(\mathbb{C}^{k}oxtimes\mathbb{C}^{\ell+1-k})$
B_{ℓ}/P_1	$B_{\ell-1}$	$quadrics\ \frac{Q^{2\ell-3}\hookrightarrow \mathbb{P}^{2\ell-2}}{Q^{2\ell-4}\hookrightarrow \mathbb{P}^{2\ell-3}}$
D_{ℓ}/P_1	$D_{\ell-1}$	$Q^{2\ell-4}\hookrightarrow \mathbb{P}^{2\ell-3}$
C_{ℓ}/P_{ℓ}	$A_{\ell-1}$	$\mathbb{P}^{\ell-1} \hookrightarrow \mathbb{P}(S^2\mathbb{C}^\ell)$
D_ℓ/P_ℓ	$A_{\ell-1}$	$\operatorname{Gr}(2,\ell)\hookrightarrow \mathbb{P}(igwedge^2\mathbb{C}^\ell)$
E_6/P_6	D_5	$\mathbb{S}_5 = D_5/P_5 \hookrightarrow \mathbb{P}^{15}$
E_7/P_7	E_6	$\mathbb{OP}^2 = E_6/P_6 \hookrightarrow \mathbb{P}^{26}$

Structure theory for the top slot $\mathfrak{g}_{ u}$

Definition

R: reductive, V: R-irrep, $V \subset \mathbb{P}(V)$ closed orbit. If the only R-orbits are $Sec_k(V) \setminus Sec_{k-1}(V)$, then V is sub-cominuscule.

Landsberg–Manivel (2003) observed that irred. |1|-graded G/P \Rightarrow \mathfrak{g}_1 is a sub-cominuscule G_0 -module.

G/P	G_0^{ss}	Sub-cominuscule variety $\mathcal{V}\subset\mathbb{P}(\mathfrak{g}_1)$
A_{ℓ}/P_{k}	$A_{k-1} \times A_{\ell-k}$	$Seg(\mathbb{P}^{k-1} imes\mathbb{P}^{\ell-k})\hookrightarrow \mathbb{P}(\mathbb{C}^{k}oxtimes\mathbb{C}^{\ell+1-k})$
B_{ℓ}/P_1	$B_{\ell-1}$	$quadrics \ \frac{Q^{2\ell-3} \hookrightarrow \mathbb{P}^{2\ell-2}}{Q^{2\ell-4} \hookrightarrow \mathbb{P}^{2\ell-3}}$
D_{ℓ}/P_1	$D_{\ell-1}$	quadrics $Q^{2\ell-4}\hookrightarrow \mathbb{P}^{2\ell-3}$
C_{ℓ}/P_{ℓ}	$A_{\ell-1}$	$\mathbb{P}^{\ell-1} \hookrightarrow \mathbb{P}(S^2\mathbb{C}^\ell)$
D_ℓ/P_ℓ	$A_{\ell-1}$	$\operatorname{Gr}(2,\ell) \hookrightarrow \mathbb{P}(\bigwedge^2 \mathbb{C}^\ell)$
E_6/P_6	D_5	$\mathbb{S}_5 = D_5/P_5 \hookrightarrow \mathbb{P}^{15}$
E_7/P_7	E_6	$\mathbb{OP}^2 = E_6/P_6 \hookrightarrow \mathbb{P}^{26}$

Proposition

The top-slot \mathfrak{g}_{ν} is a sub-cominuscule G_0 -module.

The top-slot orthogonal cascade

Q: How to parametrize G_0 -orbits in $\mathbb{P}(\mathfrak{g}_{\nu})$?

The top-slot orthogonal cascade

Q: How to parametrize G_0 -orbits in $\mathbb{P}(\mathfrak{g}_{\nu})$?

Definition

Let G be complex simple. The TSOC is an ordered sequence $\{\beta_1,\beta_2,...\}\subset \Delta(\mathfrak{g}_{\nu})$, where $\beta_1=\lambda$ is the highest root of \mathfrak{g} , and

$$\beta_j = \max\{\alpha \in \Delta(\mathfrak{g}_{\nu}) \mid \alpha \in \{\beta_1, ..., \beta_{j-1}\}^{\perp}\}, \quad j \geq 2.$$

(Remark: This max is *unique*.) Let e_{γ} be a root vector for γ .

The top-slot orthogonal cascade

Q: How to parametrize G_0 -orbits in $\mathbb{P}(\mathfrak{g}_{\nu})$?

Definition

Let G be complex simple. The TSOC is an ordered sequence $\{\beta_1,\beta_2,...\}\subset \Delta(\mathfrak{g}_{\nu})$, where $\beta_1=\lambda$ is the highest root of \mathfrak{g} , and

$$\beta_j = \max\{\alpha \in \Delta(\mathfrak{g}_{\nu}) \mid \alpha \in \{\beta_1, ..., \beta_{j-1}\}^{\perp}\}, \quad j \geq 2.$$

(Remark: This max is *unique*.) Let e_{γ} be a root vector for γ .

Theorem

The TSOC parametrizes all G_0 -orbits in $\mathbb{P}(\mathfrak{g}_{\nu})$ via

$$[e_{\beta_1}], \quad [e_{\beta_1} + e_{\beta_2}], \quad [e_{\beta_1} + e_{\beta_2} + e_{\beta_3}], \quad ...$$

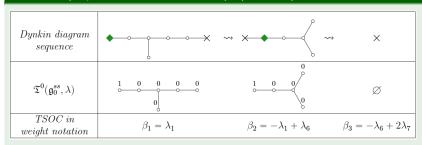
with $\langle \beta_i, \beta_i \rangle = \langle \lambda, \lambda \rangle$ for all i.

A Dynkin diagram recipe

Let $\mathfrak{T}^0(\mathfrak{g}_0^{ss},\lambda)=$ effective \mathfrak{g}_0^{ss} -action on $\mathfrak{g}_{\nu}.$ Iterative algorithm:

- Termination condition: $\mathfrak{T}^0(\mathfrak{g}_0^{ss},\lambda)=\emptyset$ or $\overset{1}{\circ}$ or $\overset{0}{\circ}$ $\overset{0}{\circ}$ $\overset{0}{\circ}$
- From $\mathfrak{D}(\mathfrak{g},\mathfrak{p})$, remove contact node(s) (diamond), then remove cross-free connected components.

Example $(E_7/P_7: 3 G_0$ -orbits in $\mathbb{P}(\mathfrak{g}_{\nu}), \ \nu=1)$

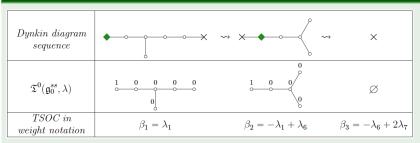


A Dynkin diagram recipe

Let $\mathfrak{T}^0(\mathfrak{g}_0^{ss},\lambda)=$ effective \mathfrak{g}_0^{ss} -action on $\mathfrak{g}_{\nu}.$ Iterative algorithm:

- Termination condition: $\mathfrak{T}^0(\mathfrak{g}_0^{ss},\lambda)=\emptyset$ or $\overset{1}{\circ}$ or $\overset{0}{\circ}$ $\overset{0}{\circ}$ $\overset{0}{\circ}$
- From $\mathfrak{D}(\mathfrak{g},\mathfrak{p})$, remove contact node(s) (diamond), then remove cross-free connected components.

Example $(E_7/P_7: 3 G_0$ -orbits in $\mathbb{P}(\mathfrak{g}_{\nu}), \ \nu=1)$



 β 's are determined from contact nodes (in the original labelling). Note that $\sum_{i=1}^{j} \beta_i$ is dominant.

Adapted \$\ell_2\$-triples

$$\alpha(H)=B(H,H_{\alpha}),\;h_{\alpha}=\tfrac{2}{\langle\alpha,\alpha\rangle}H_{\alpha}.\;\text{Find std \mathfrak{sl}_{2}-triple $\{e_{\alpha},h_{\alpha},e_{-\alpha}\}$.}$$

Adapted \mathfrak{sl}_2 -triples

$$\alpha(H) = B(H, H_{\alpha}), h_{\alpha} = \frac{2}{\langle \alpha, \alpha \rangle} H_{\alpha}.$$
 Find std \mathfrak{sl}_2 -triple $\{e_{\alpha}, h_{\alpha}, e_{-\alpha}\}.$

Lemma

Have std \mathfrak{sl}_2 -triples $\{E_j, H_j, F_j\}$ given by

$$E_{j} = \sum_{i=1}^{j} e_{\beta_{i}}, \quad H_{j} = \sum_{i=1}^{j} h_{\beta_{i}}, \quad F_{j} = \sum_{i=1}^{j} e_{-\beta_{i}}.$$

Adapted \mathfrak{sl}_2 -triples

$$\alpha(H)=B(H,H_{\alpha}),\ h_{\alpha}=rac{2}{\langle lpha,lpha
angle}H_{\alpha}.$$
 Find std \mathfrak{sl}_2 -triple $\{e_{\alpha},h_{\alpha},e_{-lpha}\}.$

Lemma

Have std \mathfrak{sl}_2 -triples $\{E_j, H_j, F_j\}$ given by

$$E_j = \sum_{i=1}^j e_{\beta_i}, \quad H_j = \sum_{i=1}^j h_{\beta_i}, \quad F_j = \sum_{i=1}^j e_{-\beta_i}.$$

Express h_{α} via dual basis $\{Z_i\} \subset \mathfrak{h}$ to simple roots $\{\alpha_i\} \subset \mathfrak{h}^*$:

$$\alpha = \sum_{i} r_{i} \lambda_{i} \quad \Rightarrow \quad h_{\alpha} = \sum_{i} r_{i} \frac{\langle \alpha_{i}, \alpha_{i} \rangle}{\langle \alpha, \alpha \rangle} Z_{i}.$$

Rmk: $\langle \beta_i, \beta_i \rangle = \langle \lambda, \lambda \rangle$. Also, coeffs of all H_i wrt Z_i are ≥ 0 .

Adapted \$l₂-triples

$$\alpha(H) = B(H, H_{\alpha}), \ h_{\alpha} = \frac{2}{\langle \alpha, \alpha \rangle} H_{\alpha}.$$
 Find std \mathfrak{sl}_2 -triple $\{e_{\alpha}, h_{\alpha}, e_{-\alpha}\}.$

Lemma

Have std \mathfrak{sl}_2 -triples $\{E_j, H_j, F_j\}$ given by

$$E_{j} = \sum_{i=1}^{j} e_{\beta_{i}}, \quad H_{j} = \sum_{i=1}^{j} h_{\beta_{i}}, \quad F_{j} = \sum_{i=1}^{j} e_{-\beta_{i}}.$$

Express h_{α} via dual basis $\{Z_i\} \subset \mathfrak{h}$ to simple roots $\{\alpha_i\} \subset \mathfrak{h}^*$:

$$\alpha = \sum_{i} r_{i} \lambda_{i} \quad \Rightarrow \quad h_{\alpha} = \sum_{i} r_{i} \frac{\langle \alpha_{i}, \alpha_{i} \rangle}{\langle \alpha, \alpha \rangle} Z_{i}.$$

Rmk: $\langle \beta_i, \beta_i \rangle = \langle \lambda, \lambda \rangle$. Also, coeffs of all H_i wrt Z_i are ≥ 0 .

Example (E_7/P_7)

$$H_1 = Z_1$$
, $H_2 = Z_6$ and $H_3 = 2Z_7$.

Specializing the Čap–Melnick criteria

Let $0 \neq E \in \mathfrak{g}_{\nu}$. WLOG, $E = E_j$, get \mathfrak{sl}_2 -triple $\{E_j, H_j, F_j\}$.

Specializing the Čap-Melnick criteria

Let
$$0 \neq E \in \mathfrak{g}_{\nu}$$
. WLOG, $E = E_j$, get \mathfrak{sl}_2 -triple $\{E_j, H_j, F_j\}$. (CM.1) $H_j \in \mathfrak{h} \subset \mathfrak{g}_0 \checkmark$

Specializing the Čap–Melnick criteria

Let $0 \neq E \in \mathfrak{g}_{\nu}$. WLOG, $E = E_j$, get \mathfrak{sl}_2 -triple $\{E_j, H_j, F_j\}$.

(CM.1)
$$H_j \in \mathfrak{h} \subset \mathfrak{g}_0 \checkmark$$

(CM.2) If $\alpha \in \Delta(\mathfrak{g}_+)$, then $\beta_i + \alpha \notin \Delta$ (since β_i are in the top-slot), so $\langle \beta_i, \alpha \rangle \geq 0$, and $\beta_i - \alpha \in \Delta$ iff $\langle \beta_i, \alpha \rangle > 0$. Have

$$[H_j, e_{-\alpha}] = \sum_{i=1}^j -\alpha(h_{\beta_i})e_{-\alpha} = -\sum_{i=1}^j \underbrace{\langle \alpha, \beta_i^{\vee} \rangle}_{\in \mathbb{Z}_{\geq 0}} e_{-\alpha}.$$

Zero-eigenspace: sum of root spaces for $-\alpha \in \{\beta_1, ..., \beta_j\}^{\perp}$ (same as $C_{\mathfrak{g}}^-(E_j)$). Thus, (CM.2) \checkmark .

Specializing the Čap-Melnick criteria

Let $0 \neq E \in \mathfrak{g}_{\nu}$. WLOG, $E = E_i$, get \mathfrak{sl}_2 -triple $\{E_i, H_i, F_i\}$.

- (CM.1) $H_i \in \mathfrak{h} \subset \mathfrak{g}_0 \checkmark$
- (CM.2) If $\alpha \in \Delta(\mathfrak{g}_+)$, then $\beta_i + \alpha \notin \Delta$ (since β_i are in the top-slot), so $\langle \beta_i, \alpha \rangle > 0$, and $\beta_i - \alpha \in \Delta$ iff $\langle \beta_i, \alpha \rangle > 0$. Have

$$[H_j, e_{-\alpha}] = \sum_{i=1}^j -\alpha(h_{\beta_i})e_{-\alpha} = -\sum_{i=1}^j \underbrace{\langle \alpha, \beta_i^{\vee} \rangle}_{\in \mathbb{Z}_{\geq 0}} e_{-\alpha}.$$

Zero-eigenspace: sum of root spaces for $-\alpha \in \{\beta_1, ..., \beta_i\}^{\perp}$ (same as $C_{\mathfrak{a}}^{-}(E_i)$). Thus, (CM.2) \checkmark .

(CM.3) H_i acts s.s. on $H^2_+(\mathfrak{g}_-,\mathfrak{g})$ \checkmark . Wrt Z_i , coeffs of H_i are ≥ 0 , so it suffices to check:

(CM.3'): $H_i(\mu) \geq 0$, μ any lowest weight of $H^2_{+}(\mathfrak{g}_{-},\mathfrak{g})$.

By Kostant, $\mu = -w \cdot \lambda$, where $w \in W^{\mathfrak{p}}(2)$.

19/21

Top-slot open orbits

Example $(E_7/P_7; \lambda = \lambda_1, w = (76))$

$$\mu = -w \cdot \lambda = [-2, -2, -3, -4, -3, -1, +1]$$
 (root notation).

- $H_1 = Z_1$: $H_1(\mu) = -2$;
- $H_2 = Z_6$: $H_2(\mu) = -1$;
- $H_3 = 2Z_7$: $H_3(\mu) = +2$.

Only H_3 (corresponding to the open orbit) passes (CM.3').

Top-slot open orbits

Example $(E_7/P_7; \lambda = \lambda_1, w = (76))$

 $\mu = -w \cdot \lambda = [-2, -2, -3, -4, -3, -1, +1]$ (root notation).

- $H_1 = Z_1$: $H_1(\mu) = -2$;
- $H_2 = Z_6$: $H_2(\mu) = -1$;
- $H_3 = 2Z_7$: $H_3(\mu) = +2$.

Only H_3 (corresponding to the open orbit) passes (CM.3').

Theorem (General parabolic geometries)

Suppose that:

- (i) $\omega_u(\xi)$ lies in the **open** G_0 -orbit of \mathfrak{g}_{ν} .
- (ii) G/P is not $A_{\ell}/P_{s,s+1}, \ 2 \leq s < \frac{\ell}{2}$ or $B_{\ell}/P_{\ell}, \ \ell \geq 5$ odd.

Then the geometry is flat on an open set $U \subset M$ with $x \in \overline{U}$.

Simple example of isotropy restrictions

Proposition

Let y'' = f(x, y, y') be not point trivializable on any open domain. Then the isotropy everywhere is of dim ≤ 2 .

Simple example of isotropy restrictions

Proposition

Let y'' = f(x, y, y') be not point trivializable on any open domain. Then the isotropy everywhere is of dim ≤ 2 .

Example (2nd order ODE mod point transf.; $A_2/P_{1,2}$)

 $y'' = (xy' - y)^3$ has \mathfrak{sl}_2 symmetry $x\partial_y + \partial_p$, $x\partial_x - y\partial_y - 2p\partial_p$, $y\partial_x - p^2\partial_p$. The isotropy dim at the origin is 2.

Simple example of isotropy restrictions

Proposition

Let y'' = f(x, y, y') be not point trivializable on any open domain. Then the isotropy everywhere is of dim ≤ 2 .

Example (2nd order ODE mod point transf.; $A_2/P_{1,2}$)

 $y'' = (xy' - y)^3$ has \mathfrak{sl}_2 symmetry $x\partial_y + \partial_p$, $x\partial_x - y\partial_y - 2p\partial_p$, $y\partial_x - p^2\partial_p$. The isotropy dim at the origin is 2.

Example (2-dim projective structures; A_2/P_1)

Above ODE example comes from a projective str. with syms $x\partial_y$, $x\partial_x - y\partial_y$, $y\partial_x$. The isotropy dim at the origin is 3.