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The jet-determination problem

Definition

At x e M,
o X € X(M) is k-jet determined if jX(X) # 0.
o S C X(M) is k-jet determined if X — jX(X) is injective.
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k such that S is k-jet det. at a given x € M?
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The jet-determination problem

Definition

At x e M,
o X € X(M) is k-jet determined if jX(X) # 0.
o S C X(M) is k-jet determined if X — jX(X) is injective.

Q: If § = sym. alg. of a geometric str. on M, what is the
k such that S is k-jet det. at a given x € M?

Example (Conformal structures)

If g =7 ,(dx')?, then here are all CKV X = X', for (M, [g]):

X'=s"+m'ix + X'+ rxpx' — Er’xj-xf

Here, S is 2-jet determined (everywhere).
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Parabolic geometries

@ G: semisimple Lie group, P: parabolic subgroup;
g=0-,@ .00 with g’ =@;5; g/ and p = ¢°, p; = g".

v
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Parabolic geometries

@ G: semisimple Lie group, P: parabolic subgroup;
g=0-,@ .00 with g’ =@;5; g/ and p = ¢°, p; = g".

v

o (G5 M,w) of type (G, P) has sym alg

inf(G,w) = {¢ € X(9)" : Lew = 0}.
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Parabolic geometries

@ G: semisimple Lie group, P: parabolic subgroup;
g=0-,@ .00 with g’ =@;5; g/ and p = ¢°, p; = g".

v

o (G5 M,w) of type (G, P) has sym alg
inf(G,w) = {€ € X(G)7 : Lew = 0}.
@ (reg/nor) parabolic geometries <+ underlying structures.

ker(9*) ) .

@ harmonic curvature Ky € I (g XP m(o7)
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Parabolic geometries

@ G: semisimple Lie group, P: parabolic subgroup;
g=0-,@ .00 with g’ =@;5; g/ and p = ¢°, p; = g".

v

o (G5 M,w) of type (G, P) has sym alg
inf(G,w) = {¢ € X(9)" : Lew = 0}.

@ (reg/nor) parabolic geometries <+ underlying structures.

@ harmonic curvature ky € I (g X p l;;:((g:)))
Notation:
e Fix x € M and fix u € 7~ %(x).

e { € inf(G,w) corresponds X € S := m,(inf(G,w)).
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Main results: Jet-det of syms of parabolic geometries

S is 2-jet determined everywhere. If G is simple, then at any
x € M where , S is 1-jet determined at x.
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Main results: Jet-det of syms of parabolic geometries

S is 2-jet determined everywhere. If G is simple, then at any
x € M where , S is 1-jet determined at x.

This is connected to the following:

Given 0 # w, (&) € g'\g' L. Then:

i<0: RAAX)#0 (0-jet determined)
0<i<v: j9X)=0,,j5X)#0 (I-jet determined)
i=v: JEH(X) =0, j2(X) #0 (2-jet determined)
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Main results: Jet-det of syms of parabolic geometries

S is 2-jet determined everywhere. If G is simple, then at any
x € M where , S is 1-jet determined at x.

This is connected to the following:

Given 0 # w, (&) € g'\g' L. Then:

i<0: RAAX)#0 (0-jet determined)
0<i<v: j9X)=0,,j5X)#0 (I-jet determined)
i=v: JEH(X) =0, j2(X) #0 (2-jet determined)

IDEA: For 1-jet det, want to show that a certain Tanaka
prolongation does reach the top-slot g, .

Key technical advance:
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Main results: Rigidity

Q: If 0 # X € S is 2-jet det. at x, we must have xky(x) = 0.
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Main results: Rigidity

Q: If 0 # X € S is 2-jet det. at x, we must have xky(x) = 0.

Let G be simple. (If g is real, assume g¢ is simple.)

Theorem (Torsion-free parabolic geometries)

IfO#X €S and jLH(X) =0, i.e. w,(€) € g,, then the geometry is
flat on open set U C M with x € U.
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Main results: Rigidity

Q: If 0 # X € S is 2-jet det. at x, we must have xky(x) = 0.

Let G be simple. (If g is real, assume g¢ is simple.)

Theorem (Torsion-free parabolic geometries)

IfO#X €S and jLH(X) =0, i.e. w,(€) € g,, then the geometry is
flat on open set U C M with x € U.

Theorem (General parabolic geometries)

Suppose that:

(i) wu(&) lies in the open Gy-orbit of g,.
(i) G/P isnot Ay/Pssi1, 2<s <% orBy/Py, £>5 odd.
Then the geometry is flat on an open set U C M with x € U.
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Part 1: Symmetry and Tanaka prolongation
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Symmetry as a graded object

Fixueg.
@ wy: T,G — g is injective on {&, : £ € inf(G,w)}.
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Fixueg.
@ wy: T,G — g is injective on {&, : £ € inf(G,w)}.
o f(u) = wy(inf(G,w)), have [X, Y]; == [X, Y]g — ru(X, Y)
e regularity = { is filtered; s(u) = gr(f(v)) C g graded subalg
o so(u) C anng,(rp(u)).

Recall ky(u) € l:g((g:)) (completely reducible, so p. acts trivially.)
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Symmetry as a graded object

Fixueg.
@ wy: T,G — g is injective on {&, : £ € inf(G,w)}.
o f(u) = wy(inf(G,w)), have [X, Y]; == [X, Y]g — ru(X, Y)
e regularity = { is filtered; s(u) = gr(f(v)) C g graded subalg
o so(u) C anng,(rp(u)).

Recall ky(u) € ker((a*)) (completely reducible, so p acts trivially.)

ker(0*) ~, ker(9) ~
Kostant = er(( )) = irer:((('?)) H?(g_,g) as go-modules.
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Symmetry as a graded object

Fixueg.
@ wy: T,G — g is injective on {&, : £ € inf(G,w)}.
o f(u) = wy(inf(G,w)), have [X, Y]; == [X, Y]g — ru(X, Y)
e regularity = { is filtered; s(u) = gr(f(v)) C g graded subalg
o so(u) C anng,(rp(u)).

Recall ky(u) € ker((a*)) (completely reducible, so p acts trivially.)

ker(0*) ~, ker(9) ~
Kostant = er(( )) = ;lr((a)) H?(g_,g) as go-modules.

Regularity = ry(u) € H3(g_, g).
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Tanaka prolongation

Definition (Tanaka prolongation)

Let ag C go be a subalg. Define a C g by a<g = g<o and
ap ={X € gk |[X,9-1] Cax_1} for k > 0. Write a = pr¥(g_, ap).
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Tanaka prolongation

Definition (Tanaka prolongation)

Let ag C go be a subalg. Define a C g by a<g = g<o and
ap ={X € gk |[X,9-1] Cax_1} for k > 0. Write a = pr¥(g_, ap).

FACT: This is equivalent to .
Notation: Given ¢ € H2(g_, g), let a® := prf(g_, ann(¢)).

Theorem (Prolongation does not reach the last level)

If g is simple and 0 # ¢ € H}r(g_,g), then af) = 0.
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Tanaka prolongation

Definition (Tanaka prolongation)

Let ag C go be a subalg. Define a C g by a<g = g<o and
ar ={X € gk | [X,9-1] Cax_1} for k > 0. Write a = pr®(g_, ag).

FACT: This is equivalent to
Notation: Given ¢ € H2(g_, g), let a® := prf(g_, ann(¢)).

Theorem (Prolongation does not reach the last level)

If g is simple and 0 # ¢ € H}r(g_,g), then af) = 0.

Example (K.-T. (2014))
Geometry H2 (g, 9) Result for 0 # ¢ € H?
-8 4

¢ _
(2,3,5)-geometry al =0
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Tanaka prolongation

Definition (Tanaka prolongation)

Let ag C go be a subalg. Define a C g by a<g = g<o and
ar ={X € gk | [X,9-1] Cax_1} for k > 0. Write a = pr®(g_, ag).

FACT: This is equivalent to
Notation: Given ¢ € H2(g_, g), let a® := prf(g_, ann(¢)).

Theorem (Prolongation does not reach the last level)

If g is simple and 0 # ¢ € H}r(g_,g), then af) = 0.

Example (K.-T. (2014))
Geometry H2 (g, 9) Result for 0 # ¢ € H?
-8 4

¢ _
(2,3,5)-geometry al =0

torsion-free pairs 0 —4 4 . -0

M——>X—-o >2 =
of 2nd order ODE 22
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Symmetry and Tanaka prolongation

Let u € G be a regular point, i.e. dim(s;(v)) are
locally constant.
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Symmetry and Tanaka prolongation

Let u € G be a regular point, i.e. dim(s;(v)) are
locally constant. We proved [s;(u),g—1] C s;_1(u), so

s(u) C prf(g_,s0(u)) C a#(),
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Symmetry and Tanaka prolongation

Let u € G be a regular point, i.e. dim(s;(v)) are
locally constant. We proved [s;(u),g—1] C s;_1(u), so

s(u) C prf(g_,s0(u)) C a#(),

The set of regular points is open and dense, so we get the submax
sym bound & < 8(:= max{dim(a®) : 0 # ¢ € H2(g_,9)}.
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Symmetry and Tanaka prolongation

Let u € G be a regular point, i.e. dim(s;(v)) are
locally constant. We proved [s;(u),g—1] C s;_1(u), so

s(u) C prf(g_,s0(u)) C a#(),

The set of regular points is open and dense, so we get the submax
sym bound & < 8(:= max{dim(a®) : 0 # ¢ € H2(g_,9)}.

Key advance: Can drop the regular point assumption.

Fix any u € G. Then s(u) C a®n(¥).
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Symmetry and Tanaka prolongation

Let u € G be a regular point, i.e. dim(s;(v)) are
locally constant. We proved [s;(u),g—1] C s;_1(u), so

s(u) C prf(g_,s0(u)) C a#(),

The set of regular points is open and dense, so we get the submax
sym bound & < 8(:= max{dim(a®) : 0 # ¢ € H2(g_,9)}.

Key advance: Can drop the regular point assumption.

Fix any u € G. Then s(u) C a®n(¥).

e G < il is immediate.

e If gis simple and ky(u) # 0, then s,(u) =0
~ jHX)#£0, VYXeS.
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Reformulating the Tanaka prolongation result

Let AM =G xpg. On [(AM) =2 X(G)P, have algebraic bracket
{-,-} and geometric bracket [-,].
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Reformulating the Tanaka prolongation result

Let AM =G xpg. On [(AM) =2 X(G)P, have algebraic bracket
{-,-} and geometric bracket [-,].

Fix u € G, sym s, s(u) € g C py, and t; € T(A~T M) with
k—ih—..—ip . Then

{to, Lo, {t1, s} ) }(u) - ks (u) = 0.
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Reformulating the Tanaka prolongation result

Let AM =G xpg. On [(AM) =2 X(G)P, have algebraic bracket
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Fix u € G, sym s, s(u) € g C py, and t; € T(A~T M) with
k—ih—..—ip . Then

{to, Lo, {t1, s} ) }(u) - ks (u) = 0.

For any natural bundle E = G xp E, have fundamental derivative
D:T(AM) x T(E) — T'(E). Key properties:
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Reformulating the Tanaka prolongation result
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{-,-} and geometric bracket [-,].
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{to, Lo, {t1, s} ) }(u) - ks (u) = 0.

For any natural bundle E = G xp E, have fundamental derivative
D :T(AM) x T(E) — T'(E). Key properties:
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Reformulating the Tanaka prolongation result

Let AM =G xpg. On [(AM) =2 X(G)P, have algebraic bracket
{-,-} and geometric bracket [-,].

Fix u € G, sym s, s(u) € g C py, and t; € T(A~T M) with
k—ih—..—ip . Then

{tm {a {tla S}}}(U) : KJH(U) =0.
For any natural bundle E = G xp E, have fundamental derivative
D :T(AM) x T(E) — T'(E). Key properties:
o If r(u) € p, then (D,t)(u) = —r(u) - t(u), where t € [(E).
@ ssym = Dsky =0, Dst = [s, t] for t € [(AM).
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Reformulating the Tanaka prolongation result

Let AM =G xpg. On [(AM) =2 X(G)P, have algebraic bracket
{-,-} and geometric bracket [-,].

Fix u € G, sym s, s(u) € g C py, and t; € T(A~T M) with
k—ih—..—ip . Then

{tn, {.-., {t1,s}...}}(v) - ku(u) = 0.
For any natural bundle E = G xp E, have fundamental derivative
D :T(AM) x T(E) — T'(E). Key properties:
o If r(u) € p, then (D,t)(u) = —r(u) - t(u), where t € [(E).
@ ssym = Dsky =0, Dst = [s, t] for t € [(AM).
@ Thus, if s sym with s(u) € p, then [s, t](u) = —{s, t}(u).
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Recall: ky €T (g X p l:re;((g:)))
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Recall: ky €T (g X p l:re;((g:)))

Let s(u) € g¥>1 and t € T(A™*M). WTS: | {s, t}(u) - rps(u) = 0|
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Recall: ky €T (g X p l:re;((g:)))

Let s(u) € g¥>1 and t € T(A™*M). WTS: | {s, t}(u) - rps(u) = 0|

0=Dsky = 0=DiDsky = DsDirpy + D[t,s]ﬁH- (*)

Dennis The Jet-determination of symmetries 11/21



Recall: ky €T (g X p l:re;((g:)))

Let s(u) € g¥>1 and t € T(A™*M). WTS: | {s, t}(u) - rps(u) = 0|

0=Dsky = 0=DiDsky = DsDirpy + D[t,s]ﬁH- (*)

@ (DsDikp)(u) = —s(u) - (Dirp)(u) =0
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Recall: ky €T (g X p l:re;((g:)))

Let s(u) € g¥>1 and t € T(A™*M). WTS: | {s, t}(u) - rps(u) = 0|

0=Dsky = 0=DiDsky = DsDirpy + D[t,s]ﬁH- (*)

® (DsDikip)(u) = —s(u) - (Dekp)(u) =0
o [t,s](u) = {s,t}(u) €g® =p
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Recall: ky €T (g X p l:re;((g:)))

Let s(u) € g¥>1 and t € T(A™*M). WTS: | {s, t}(u) - rps(u) = 0|

0=Dsky = 0=DiDsky = DsDirpy + D[t,s]ﬁH- (*)

@ (DsDikp)(u) = —s(u) - (Dirp)(u) =0
o [t,s](u) ={s,t}(u) €g® =p
o (¥) = 0= Dy grn = —{s, t}(u) - £n(v)

Dennis The Jet-determination of symmetries 11/21



Recall: ky €T (g X p l:re;((g:)))

Let s(u) € g¥>1 and t € T(A™*M). WTS: | {s, t}(u) - rps(u) = 0|

0=Dsky = 0=DiDsky = DsDirpy + D[t,s]ﬁH- (*)

® (DsDikip)(u) = —s(u) - (Dekp)(u) =0

o [t,5)(u) = {s, t}(u) € ¢° = p

o (+) = 0= Dyyagin = —{s, t}(u) - (1)
|1|-graded case:
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Recall: ky €T (g X p l:;r((g:)))

Let s(u) € g¥>1 and t € T(A™*M). WTS: | {s, t}(u) - rps(u) = 0|

0=Dsky = 0=DiDsky = DsDirpy + D[t,s]ﬁH- (*)

® (DsDikip)(u) = —s(u) - (Dekp)(u) =0

o [t,;s](u) ={s. th(u) eg® =p

o () = 0= Dypgin = —{s, t}() ()
|1|-graded case: v'. General case is a complicated induction. Have
to contend with identities like

[t2, [t1,5]] = Dy[t1,s] - D[t1,S] to — w(M(2), N([t1, s])) + {t2, [t1, s]}-
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Sample of general case

Let s(u) € g% and t1,t € T(A"M). From 0 = Dy, Dy, Dskiy,

(*) 0= D[t27[t17s]]/{H + D[tl,s] th"fH + D[tg,s] DtlﬁH + Dst2 DthvH-

‘Let = mean “equality when evaluated at u”

Dennis The Jet-determination of symmetries 12/21



Sample of general case

Let s(u) € g% and t1,t € T(A"M). From 0 = Dy, Dy, Dskiy,

(*) 0= D[t27[t17s]]/{H + D[tl,s] th"fH + D[tg,s] DtlﬁH + Dst2 DthvH-
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Sample of general case

Let s(u) € g% and t1,t € T(A"M). From 0 = Dy, Dy, Dskiy,

(*) 0= D[t27[t17s]]/{H + D[tl,s] th"fH + D[tg,s] DtlﬁH + Dst2 DthvH-

‘Let = mean “equality when evaluated at u” ‘

[tj,s](u) = —{tj,s}(u) € p+, 50 (*) = 0 = Dy, 1,5 5 H-

[t2, [t1, 5] = Dey[t1, 5] — Dy gt — 5(N(t2), N([t1, 5])) + {2, [t1, 5]}
= Dy[t1,5] = =Dy, Dsty = —DsDy,ty — Dy, g1
= _DSDtQt]- + {{57 t2}7 tl}
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Sample of general case

Let s(u) € g% and t1,t € T(A"M). From 0 = Dy, Dy, Dskiy,

(*) 0= D[t27[t17s]]/{H + D[tl,s] th"fH + D[tg,s] DtlﬁH + Dst2 DthvH-

‘Let = mean “equality when evaluated at u” ‘

[tj,s](u) = —{tj,s}(u) € p+, 50 (*) = 0 = Dy, 1,5 5 H-

[t2, [t1, 5] = Dey[t1, 5] — Dy gt — 5(N(t2), N([t1, 5])) + {2, [t1, 5]}
= Dy[t1,5] = =Dy, Dsty = —DsDy,ty — Dy, g1
= _DSDtQt]- + {{57 t2}7 tl}

o (DsDpyt1)(u) = —s(u) - (Dyt1)(u) € g>~L Cpy.
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Sample of general case

Let s(u) € g% and t1,t € T(A"M). From 0 = Dy, Dy, Dskiy,

(*) 0= D[t27[t17s]]/{H + D[tl,s] th"fH + D[tg,s] Dtll"fH + Dst2 DtIHH‘

‘Let = mean “equality when evaluated at u” ‘

[tj,s](u) = —{tj,s}(u) € p4, s0 (¥) = 0 = Dy, [, s]]5H

[t2, [t1, 5] = Dey[t1, 5] — Dy gt — 5(N(t2), N([t1, 5])) + {2, [t1, 5]}
= Dy[t1,5] = =Dy, Dsty = —DsDy,ty — Dy, g1
= _DSDtQt]- + {{57 t2}7 tl}

o (DsDyt1)(u) = —s(u) - (Dpts)(u) € g°7F C py.
o {s,{t1,t2}}(u) - ky(u) = 0 (apply previous case).
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Sample of general case

Let s(u) € g% and t1,t € T(A"M). From 0 = Dy, Dy, Dskiy,

(*) 0= D[t27[t17s]]/{H + D[tl,s] th"fH + D[tg,s] Dtll"fH + Dst2 DtIHH‘

‘Let = mean “equality when evaluated at u” ‘

[t s1(u) = —{tj, s}(u) € py, 50 (%) = 0 = Dy, 1, 5] iH-

[t27 [tla 5]] = sz[tla 5] - D[tl,s]tZ - H(n(b)a n([t17 S])) + {t27 [t175]}
= Dy[t1,5] = =Dy, Dsty = —DsDy,ty — Dy, g1
= —DsDypt1 + {{s, o}, t1 }

o (DsDpyt1)(u) = —s(u) - (Dyt1)(u) € g>~L Cpy.
o {s,{t1,t2}}(u) - ky(u) = 0 (apply previous case).
o [to,[t1,s]](u) — {t2, {t1,s}}(v) =0 mod anny(kp(u)).

Dennis The Jet-determination of symmetries 12/21



Part 2: Structure of g, and rigidity
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Cap—Melnick criteria

X € S has higher-order fixed point at x if 0 # E := w,(§) € p+.
= std slp-triple {F, H, E}.
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= std sly-triple {F, H, E}. “Good" sl,-triple:

(CM.1) H € go;

(CM.2) Eigenvalues of H on g_ are < 0, the gen. eigenspace for
eigenv. with real part zero is C; (E) = {X € g |[X, E] = 0},
and adH|C_(E) =0;

g

(CM.3) H acts s.s. on H2(g_, g) and all eigenvalues are > 0.
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X € S has higher-order fixed point at x if 0 # E := w,(§) € p+.
= std sly-triple {F, H, E}. “Good" sl,-triple:
(CM.1) H € go;

(CM.2) Eigenvalues of H on g_ are < 0, the gen. eigenspace for
eigenv. with real part zero is C; (E) = {X € g |[X, E] = 0},
and adH|C_(E) =0;

g

(CM.3) H acts s.s. on H2(g_, g) and all eigenvalues are > 0.

Theorem (Cap—Melnick (2013))

Suppose (CM.1-3) hold, ky(x) =0, and v = 7. (w, 1(F)) € TM.
Then 3y : (—€,+€) = M, v(0) = x, 7/(0) = v, preserved by flow
of X & on which it acts by proj. transf. Let v* = 7((0, +¢)) C M,
dnbd U of v, U > x, on which the geometry is flat.

Dennis The Jet-determination of symmetries 14/21



Cap—Melnick criteria

X € S has higher-order fixed point at x if 0 # E := w,(§) € p+.
= std sly-triple {F, H, E}. “Good" sl,-triple:
(CM.1) H € go;

(CM.2) Eigenvalues of H on g_ are < 0, the gen. eigenspace for
eigenv. with real part zero is C; (E) = {X € g |[X, E] = 0},
and adH|C_(E) =0;

g

(CM.3) H acts s.s. on H2(g_, g) and all eigenvalues are > 0.

Theorem (Cap—Melnick (2013))

Suppose (CM.1-3) hold, ky(x) =0, and v = 7. (w, 1(F)) € TM.
Then 3y : (—€,+€) = M, v(0) = x, 7/(0) = v, preserved by flow
of X & on which it acts by proj. transf. Let v* = 7((0, +¢)) C M,
dnbd U of v, U > x, on which the geometry is flat.

Investigated the |1|-graded case.

Dennis The Jet-determination of symmetries 14/21



Cap—Melnick criteria

X € S has higher-order fixed point at x if 0 # E := w,(§) € p+.
= std sly-triple {F, H, E}. “Good" sl,-triple:
(CM.1) H € go;

(CM.2) Eigenvalues of H on g_ are < 0, the gen. eigenspace for
eigenv. with real part zero is C; (E) = {X € g |[X, E] = 0},
and adH|C_(E) =0;

g

(CM.3) H acts s.s. on H2(g_, g) and all eigenvalues are > 0.

Theorem (Cap—Melnick (2013))

Suppose (CM.1-3) hold, ky(x) =0, and v = 7. (w, 1(F)) € TM.
Then 3y : (—€,+€) = M, v(0) = x, 7/(0) = v, preserved by flow
of X & on which it acts by proj. transf. Let v* = 7((0, +¢)) C M,
dnbd U of v, U > x, on which the geometry is flat.

Investigated the |1|-graded case.
Our study: General grading, but suppose E € g, (“top slot”).
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Structure theory for the top slot g,

Definition

R: reductive, V' : R-irrep, V C P(V) closed orbit. If the only
R-orbits are Seci(V)\Seck—1(V), then V is
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Structure theory for the top slot g,

Definition

R: reductive, V' : R-irrep, V C P(V) closed orbit. If the only
R-orbits are Seci(V)\Seck—1(V), then V is

Landsberg—Manivel (2003) observed that irred. |1|-graded G/P
= g1 is a sub-cominuscule Gg-module.
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Structure theory for the top slot g,

Definition

R: reductive, V' : R-irrep, V C P(V) closed orbit. If the only
R-orbits are Seci(V)\Seck—1(V), then V is

Landsberg—Manivel (2003) observed that irred. |1|-graded G/P
= g1 is a sub-cominuscule Gg-module.

| G/P ] Gy | Sub-cominuscule variety V C P(g1) |
Ac/Pi | A1 X Ar_i | Seg(PF T x PPF) = P(CFRICHFI=F)
B./Py Bis Q¥ 3 P2
Dy/Py Dy_1 quadrics Q2 oy p2-3
Ce/ Py Ar—1 P~ — P(S2CH)
Dy/P; Ar1 Gr(2,0) = P(A\°C)
Es/Ps Ds Ss = Ds/Ps — P
E//P; E OP? = Es/Ps — P*®
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Structure theory for the top slot g,

Definition

R: reductive, V' : R-irrep, V C P(V) closed orbit. If the only
R-orbits are Seci(V)\Seck—1(V), then V is

Landsberg—Manivel (2003) observed that irred. |1|-graded G/P
= g1 is a sub-cominuscule Gg-module.

| G/P ] Gy | Sub-cominuscule variety V C P(g1) |
Ac/Pi | A1 X Ar_i | Seg(PF T x PPF) = P(CFRICHFI=F)
B./Py Bis Q¥ 3 P2
Dy/Py Dy_1 quadrics Q2 oy p2-3
Ce/ Py Ar—1 P~ — P(S2CH)
Dy/P; Ar1 Gr(2,0) = P(A\°C)
Es/Ps Ds Ss = Ds/Ps — P
E//P; E OP? = Es/Ps — P*®

Proposition

The top-slot g, is a sub-cominuscule Gop-module.
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The top-slot orthogonal cascade

Q: ?
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The top-slot orthogonal cascade

Q: ?

Definition

Let G be complex simple. The TSOC is an ordered sequence
{1, B2, ...} T A(gy), where 31 = X is the highest root of g, and

Bj = max{a € A(gl/) |Oé € {/31) "'7Bj—l}L}a Jj =2

(Remark: This max is unique.) Let e, be a root vector for 7.
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The top-slot orthogonal cascade

Q: ?

Definition

Let G be complex simple. The TSOC is an ordered sequence
{1, B2, ...} T A(gy), where 31 = X is the highest root of g, and

Bj = max{a € A(gl/) |Oé € {Bl) "'76]—1}L}a Jj =2

(Remark: This max is unique.) Let e, be a root vector for 7.

The TSOC parametrizes all Go-orbits in P(g,) via

[6,31]7 [eﬁl + eﬂz]’ [eﬁl + €3, + 653],

with (B;, B:) = (A, \) for all i.
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A Dynkin diagram recipe

Let T0(g5*, \) = effective g&*-action on g,. Iterative algorithm:

o Termination condition: T%(gg*, \) = () or &— ... 6—=

e From D(g,p), remove contact node(s) (diamond), then
remove cross-free connected components.

Example (E7/P7 : 3 Gp-orbits in P(g,), v = 1)

Dynkin diagram %
sequence

T(g5", \) O—O—I—Q—@ @
0
TS0C in
weight notation

8=\ S W By = —Ag + 2\
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A Dynkin diagram recipe

Let T0(g5*, \) = effective g&*-action on g,. Iterative algorithm:

o Termination condition: T%(gg*, \) = () or &— ... 6—=

e From D(g,p), remove contact node(s) (diamond), then
remove cross-free connected components.

Example (E7/P7 : 3 Gp-orbits in P(g,), v = 1)

Dynkin diagram %
sequence

T(g5", \) O—O—I—Q—@ @
0
TS0C in
weight notation

8=\ S W By = —Ag + 2\

f's are determined from contact nodes (in the original labelling).
Note that > %_; §; is dominant.
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Adapted sl,-triples

a(H) = B(H, Hy), hoa = -2+ H,. Find std slo-triple {eq, ha, e_o}.

(a,)
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Adapted sl,-triples

a(H) = B(H, Hy), hoa = -2+ H,. Find std slo-triple {eq, ha, e_o}.

(a,)

Have std sl>-triples {Ej, H;, F;} given by
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Adapted sl,-triples

a(H) = B(H, Hy), hoa = -2+ H,. Find std slo-triple {eq, ha, e_o}.

(a,)

Have std sl>-triples {Ej, H;, F;} given by

Express h,, via dual basis {Z;} C b to simple roots {«;} C h*:

o = Z r,-)\,- = ha = Z ri <z);:: Zl>> Z,'.

i i

Rmk: (5,’,,3,‘> = <)\, /\> Also,
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Adapted sl,-triples

a(H) = B(H, Hy), hoa = -2+ H,. Find std slo-triple {eq, ha, e_o}.

(a,)

Have std sl>-triples {Ej, H;, F;} given by

Express h,, via dual basis {Z;} C b to simple roots {«;} C h*:

o = Z r,-)\,- = ha = Z ri <z);:: Zl>> Z,'.

i i

Rmk: (5,’,,3,‘> = <)\, /\> Also,

Example (E7/P7)
H1 = Zl, H2 = ZG and H3 = 227.
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Specializing the Cap—Melnick criteria

Let 0 # E € g,. WLOG, E = Ej, get sly-triple {E;, H}, F;}.
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Specializing the Cap—Melnick criteria

Let 0 # E € g,. WLOG, E = Ej, get sly-triple {E;, H}, F;}.
(CM.1) Hj € b C go
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Specializing the Cap—Melnick criteria

Let 0 # E € g,. WLOG, E = Ej, get sly-triple {E;, H}, F;}.
(CM.1) HiebhCgo
(CM.2) If a € A(g4), then 5+ o € A (since f3; are in the top-slot),
so (B, ) >0, and B; — a € Aiff (B;, ) > 0. Have

J

[Hj, e—a] = Z —a(hg)e—a = — Z (a, 8) e_a

i=1 i=1 €Zso

Zero-eigenspace: sum of root spaces for —a € {1, ...,ﬁj}L
(same as C; (E;)). Thus, (CM.2)
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Specializing the Cap—Melnick criteria

Let 0 # E € g,. WLOG, E = Ej, get sly-triple {E;, H}, F;}.
(CM.1) HiebhCgo
(CM.2) If a € A(g4), then 5+ o € A (since f3; are in the top-slot),
so (B, ) >0, and B; — a € Aiff (B;, ) > 0. Have

J

[Hj, e—a] = Z —a(hg)e—a = — Z (a, 8) e_a

i=1 i=1 €Zso

Zero-eigenspace: sum of root spaces for —a € {1, ...,ﬁj}L
(same as C; (E;)). Thus, (CM.2)

(CM.3) H; acts s.s. on H3(g—,g) v. Wrt Z;, coeffs of H; are > 0, so
it suffices to check:

By Kostant, = —w - A\, where w € WP(2).
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Top-slot open orbits

Example (E7/P7; A = A1, w = (76))
pw=-w-A=[-2,-2,-3,—4,-3,—1,+1] (root notation).
o Hi = 2Zi: Hi(p) = -2
o Hy=Zs: Ho(p) = —1;
e H3 =277 Hz(u) = +2.
Only Hs (corresponding to the open orbit) passes (CM.3').
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Top-slot open orbits

Example (E7/P7; A = A1, w = (76))
pw=-w-A=[-2,-2,-3,—4,-3,—1,+1] (root notation).
o Hi = 2Zi: Hi(p) = -2
o Hy=Zs: Ho(p) = —1;
e H3 =277 Hz(u) = +2.
Only Hs (corresponding to the open orbit) passes (CM.3').

Theorem (General parabolic geometries)

Suppose that:

(i) wu(&) lies in the open Gy-orbit of g, .

(i) G/P isnot Ay/Pssi1, 2<s <% or By/P, £>5 odd.
Then the geometry is flat on an open set U C M with x € U.
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Simple example of isotropy restrictions

Proposition

Let y" = f(x,y,y’) be not point trivializable on any open domain.
Then the isotropy everywhere is of dim < 2.
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Simple example of isotropy restrictions

Let y" = f(x,y,y’) be not point trivializable on any open domain.

Then the isotropy everywhere is of dim < 2.

Example (2nd order ODE mod point transf.; Ay/P12)

y" = (xy' — )3 has sl, symmetry x9, + 0, x9x — yd, — 2p0,,
y0Ox — p?0p. The isotropy dim at the origin is 2.
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Simple example of isotropy restrictions

Let y" = f(x,y,y’) be not point trivializable on any open domain.
Then the isotropy everywhere is of dim < 2.

Example (2nd order ODE mod point transf.; Ay/P12)

y" = (xy' — )3 has sl, symmetry x9, + 0, x9x — yd, — 2p0,,
y0Ox — p?0p. The isotropy dim at the origin is 2.

Example (2-dim projective structures; Ap/P1)

Above ODE example comes from a projective str. with syms xd,,
x0x — y0y, yOx. The isotropy dim at the origin is 3.
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