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Abstract: We give a parametrization of the set of isomorphism classes of
triples (E, P, @), where E is an elliptic curve and P, (Q are rational [-torsion
points with given Weil pairing, when [ = 5,7. When the base field is finite,
we also investigate the cardinality of this set.
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1. Introduction and Notation

Let E be an elliptic curve defined over a field K. Let { > 3 be a prime number
which is relatively prime to the characteristic of the field K. We assume
that K has a primitive I-th root of unity ;. We also assume that E has a
rational /-torsion point. In [3], we give a method for finding a criterium that
distinguishes whether or not all the I-torsion points are rational. We also make
this criterium explicit in the cases [ = 3, 5 and 7.

In the present paper, we shall give an explicit parametrization of the set
Wi (K) of isomorphism classes of triples (E, P, Q), where E is an elliptic curve
defined over K, P and @) are rational [-torsion points on E such that the Weil
pairing ¢;(P, Q) = (;, in the cases | = 5 and [ = 7. When K is a finite field,
we shall be able to give the cardinality of this set.
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The paper is organized in the following way: in the next section, we shall
give the general method for finding the parametrization, while we shall make
everything explicit in the two next sections, which will deal with [ = 5 and
I = 7 respectively. The interested reader may find two MAGMA files (see
[5, 6]) that have the parametrization.

We will freely use the results from [3]. The notation will be the one from [2].

2. The Method

We assume that [ > 5. Using the Tate normal form, we can parametrize the
set Y1(1)(K) of isomorphism classes of pairs (E, P), where E is an elliptic curve
defined over K and P € E[l]. The set Y1({)(K) can be given as a (singular)
curve
Cl : f(b,C) :0’

where we remove a finite number of points that would correspond to curves
with discriminant 0. We denote by C}*(K) the curve without these points. The
parametrization is then given by

o CHK) — Vi()(K),
(b7 C) e [Eb,mp]a
where
Eye:y*+ (1 — c)zy — by = 2° — bz?
and
P = (0,0).
Remark 1. The equation of Cj is in fact 9;(0) = 0, where () is the
I-th division polynomial of the curve y2 + (1 — ¢)zy — by = 23 — bx? defined
over K(b,c). The bad points that have to be removed are those which satisfy

A =16b% — 8b%c? — 20b%c + b* + b3c* — 3633 + 3b°c? — bPc = 0.
Our criterium was a function R; € K(C}) never vanishing on Y7 (1)(K) such
that
Eyll] C Eyo(K) & Ry(b,c) € KO.
The function R; was found by considering the points @) such that e;(P, Q) = (.

This function R; can be expressed as Ry = £, where g, h are polynomials in
two variables B, C and coefficients in K.
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We can define the curve
X { 9(B,C)—U'n(B,C) =0,
| f(B,C)=0.
It is obvious to see that we have a point on this curve if and only if the
corresponding curve has full rational [-torsion. When we work on the function
field K(X;), the polynomial ¢; ; necessarily splits. Let g be one of the roots
(rg can be expressed as a function of b,c,u), and yg the corresponding y-
coordinate (yg can expressed as a function of z¢, and thus of b,c,u) of the
point Q = (zg,yq) such that €;(P,Q) = (;. This gives our parametrization:
¢: X[(K) —  W(K),
(b7 ¢, u) = [(Eb,cvpa Q)]a
where X is the curve X; without the bad points.
Remark 2. For any point (b, c,u) € X/ (K), there are [ — 1 other points,

namely (b, c, Cl’u), 1 <4 <1 —1, which correspond to the [ — 1 other points R
such that e¢;(P, R) = (;.

3. The Casel =5
3.1. Parametrization

In this case, we can replace C5(K) by K using the bijection
K — GC5(K),
t —  (L1).
The function Ry is R; = i:—gg with a5 = 8+ 55 + 5¢5 and B5 = 3 — 5¢5 — 5(F.
This gives the curve
X5 : (T — as) — U(T — B5) = 0.
Here, the bad points correspond to t = a5, t = 5 and ¢ = 0. Working with

MAGMA, we find that

xQ=Z—: and yQ:Z—Z

ne = (=3¢ —3¢ —5ut — (2 + G + G+ 2)u’ — o
+(¢8 +2¢2 + ¢s)u — 3¢2 — 5¢s — 3
de = '+ QE+E+G+2ud+ (26 +26+2u+ (E -G+ Glu+G
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(13¢2 + 13¢2 + 21)u” — (11¢2 + 2 + 6C5 + 8)ub — (52 + 4¢5 + 3)u°
(262 — 3 + G5 — 2)u* + (3¢2 + 6¢Z + 4¢5 + 2)u’
+(¢8 - 6¢3 — 11¢5 — T)u® — (1162 + 8¢5 — 5¢5 — 10)u
+(13¢3 + 21¢2 + 13¢5),
dy = o'+ (3G +G+2¢+2)u+ (¢ —2¢ +3¢ — 1’
— (4¢3 + 3¢5 + 2G5 + 6)u’ — (4¢3 — 23 + 2G5 + 1)
H(E+20E - 26+ 3+ BE+E+ G+ 2u -G
The interested reader may find these quantities in the MAGMA file [5].

ny = -—

3.2. A Brief Study of the Curve X5

The projective closure X5 of X5 is given by the equation

X5 : (T —asV)VP = U(T - B5V)
in P?(K). This is a curve of degree 6 with a unique ordinary singularity of
order my, = 5 at the point Se = [1 : 0: 0]. The genus of X5 is thus

d—1 Moo
= - =0.
Since it has a rational point, it is birationnaly equivalent to P!(K).

Remark 3. It is possible to define a nonsingular model )?jr, in P4 (K) for
X5. It is given by
(a5 Z27% — B5 2325 — Z45 — Z2 =0
65Z§’Z3 — Z%Z5 — OL5ZQ2Z§ + Z§Z3Z5 =0
—B5212372 + Z1Z3 + a5 2273 — ZaZ3 =0
X5:Q8 —PsZ2Z5+ 7275+ asZ3 — Z3Z, =0
Z1Z9— 732 =0
12y — Z3Z5 =0
ZoZs — Z3Zy =0

The bijection between the regular points of X5 and the points of :)EE, with Z7.
Zsy, Z3 not all equal to 0 is given by
[T:U:V] — [U?:V2:UV:TV:TU].
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3.3. Cardinality of W5 (F,)

From the equation of X5, we see that the curve can be parametrized by the
variable U, and this gives us the cardinality of W5(F,) in a straithforward
way. We just have to remove from [, the values of u that lead to bad points.
Those are:

— u =0 (leads to t = a3),

—u=¢,1<i<5,

—u=C1+¢—¢3),1<i<5 (leads to t =0),
that is 11 points. We get then the following proposition:

Proposition 1. Let IF, be a finite field with q elements, with q =
1 (mod5). Then

HWs5(F,) = q — 11.

4. The Casel =17
4.1. Parametrization

In this case, we can replace C7(K) by K using the bijection

K — C7(K),
t — B —-1212—1t).
The function Ry is By = =200Sp0 with a7 = 1 - 2¢; — 3¢2 — 3¢5 — 25,
Br=1—2¢2 -3¢ —3¢F —2¢3 and y7 = 1 — 3¢7 — 2¢3 — 2¢# — 3¢S. This gives
the curve
X7:(T—a7)(T - Br)? -U(T—y)*=0.

Here, the bad points correspond to ¢t = a7, t = B7, t = v, t = 0 and ¢t = 1.
Working with MAGMA, we find that

zQ=7 and yQ:%.

The interested reader mey find the quantities ny, dy, ny and n, in [4], as well
as in the MAGMA file [6].
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4.2. A Brief Study of the Curve X7

The projective closure X7 of X7 is given by
X7: (T —arV)(T = B V2V —U (T — v V).
This is a curve of degree 10 with 3 singular points which are all rational:

— the point Seo, = [1 : 0: 0], is ordinary, of multiplicity meo, = 7. When
we blow it up, we get 7 rational points lying above it,

— the point S, = [0 : 1 : 0] is not ordinary, of multiplicity mee,,0 = 3. We
need to blow it up 3 times in order to resolve the singularity. In doing so, we
get 1 point over it on every blowing-up, which are respectively of multiplicity
Mooy, 1 = Mooy,2 = 3 and Mo, 3 = 1. Note that all the blown-up points are
rational,

— the point S; = [B7 : 0 : 1] is not ordinary, of multiplicity mq0 = 2. We
need to blow it up 3 times in order to resolve the singularity. In doing so, we
get 1 point over it on every blowing-up, which are respectively of multiplicity
my,1 = my2 = 2 and my 3 = 1. Note that all the blown-up points are rational.

The genus of X7 is thus
10-1\ (m 3. (m 2\ (Mooy,1
_ - . 01\ ] _ 02, —
o-(°)-(5)-5(%)-505) -+
1=0 1=0
4.3. Cardinality of F~(Fq)

If )?; is a nonsingular model of X7, then we know that ),(\'/7 is also of genus 3.
If K =T, is a finite field with g elements, then Weil’s theorem implies that

#X7(Fg) — (q+1)| < 29v/7 = 61/4.
Now, we know that
# X7 — #X7(Fy)
is given by the number of [Fy-rational of )A(; points lying over the singular
points of X7 minus the number of rational singularities of X7(Fq). In our

case, we have 7 rational points lying above Su,, 1 over So, and 1 over 5.
Thus,

#X7 — #X7(Fg) =9 —3=6.
We also know that
#X_7(]Fq) - #X7(Fq) =2
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which is the number of added rational points added in the projective closure.
Finally,
#X7(Fg) — #Wr(Fy)
is given by the number of rational bad points on X7(F,). Those are:
— the point (a7, 0),
— the point (G7,0),
— the points (0, (1 — (7 +¢7)¢5), 0 < i <6,
— and the points (1, (1 + ¢ +¢Z — ¢ — 3)¢), 0 < i < 6,
and thus
#X7(Fq) — #Wr(F,) = 16.
We get therefore the following proposition.

Proposition 2. Let F, be a finite field with q elements, with q =
1 (mod 7). Then

[#Wr(Fq) — (¢ — 23)| < 6,/
Remark 4. This is the best possible bound, since there is equality up
and down for Fy=F;32 and F, = Fy34.
Remark 5. Using the zeta function of the curve X7, we can even find
the following result for finite fields of characteristic 2 and 3:
#Wry(Frogn) = 729" — 23 — 6(—27)"
and
#Wr(Fgn) = 8" — 23 = 3(a1 " + ")
where oy, as € C are the roots of the polynomial 872 + 5T + 1.
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