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Abstract. Given a constant weight linear code, we investigate its weight hierarchy and
the Stanley-Reisner resolution of its associated matroid regarded as a simplicial complex.
We also exhibit conditions on the higher weights su�cient to conclude that the code is of
constant weight.

1. Introduction and notation

In [5] one found the hierarchy of higher Hamming weights for constant weight linear codes
over a �nite �eld Fq, and one also found some su�cient conditions to conclude linear code
is of constant weight (if it is of constant weight of some "higher order"). In the present
paper we will �rst give some other su�cient conditions. Then we will proceed to give
more re�ned information about constant weight codes by studying the associated matroids
derived from parity check matrices. From a more abstract perspective, it is well known
that if one regards a matroid as a simplicial complex (using independent sets as faces),
then the Stanley-Reisner ideal of its Alexander dual has a pure, linear N-graded resolution.
Furthermore it is clear from Corollary 4.4 of [4] that the Stanley-Reisner ideal of a matroid
itself has a pure, linear resolution if and only its restriction to its set of non-isthmuses is
uniform. Here we will exhibit �nite matroids (those derived from constant weight codes),
which themselves have pure N-graded resolution of their Stanley-Reisner rings, but being
far from linear. Before giving more details (at the end of this section) about our results we
will explain our notation and concepts.

Let Fq be a �nite �eld. A linear q-ary code C is a linear subspace of Fnq for some n ∈ N.
We denote by k the dimension of the code as a vector space over Fq. A codeword c is an
element of the code, and a subcode is a linear subspace of C. We denote by Ci(C) the set
of subcodes of dimension i of C. Let c = (c1, · · · , cn) be a codeword and x ∈ {1, · · · , n}.
We will sometimes write c|x for cx. Let D ⊂ C a subcode. Its support is

Supp(D) = {x ∈ {1, · · · , n}, ∃d ∈ D, d|x 6= 0}
and its weight is

w(D) = |Supp(D)|.
The weight of a codeword is the weight of the subcode generated by it. The minimum (Ham-
ming) distance d of a code is the minimal weight of its non-zero codewords or equivalently
of its 1-dimensional subcodes. A [n, k, d]q is a linear q-ary code in Fnq code of dimension k
and minimum distance d.
In [2], one generalizes the minimal distance to subcodes of higher dimension, namely, for
1 6 i 6 d,

di = min {w(D), D ∈ Ci(C)} .
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Of course, d1 = d.
For our purpose, a code can be given in two equivalent ways: either by a generator matrix
or a parity check matrix. A generator matrix GC of the code C is a k × n matrix whose
row space is C. A parity check matrix HC of the code C is a (n− k)× n matrix such that

c =
[
c1 · · · cn

]
∈ C ⇔ cHt

C =
[
0 · · · 0

]
.

A constant weight code is a code whose non-zero codewords have the same weight d.

We refer to [7] for the theory of matroids. A matroid ∆ on the set E = {1, · · · , n} can
be characterized by many equivalent de�nitions. We give one here: a matroid is de�ned by
its set B ⊂ 2E of basis satisfying the following properties:

• B 6= ∅,
• ∀B1, B2 ∈ B,∀x ∈ B2 −B1, ∃y ∈ B1 −B2 such that B2 − {x} ∪ {y} ∈ B.

An independent set is a subset of a basis, and a circuit is a minimal dependent set. For any
subset σ ⊂ E, the rank of σ is

rank(σ) = max{|B ∩ σ|, B ∈ B},
and for any 1 6 i 6 n− rank(E), de�ne the higher weights of the matroid by

di = min{|σ|, |σ| − rank(σ) = i}.
Let C be a [n, k, d]q code given by a parity check matrix HC . We can de�ne a matroid

∆(HC) in the following way: its ground set is E = {1, · · · , n} (the indices of the columns
of HC) and its set B of basis is

B =

{
σ ⊂ E, σ maximal such that the columns of HC

labelled by σ are linearly independant

}
.

It can be shown that :

• two di�erent parity check matrices give the same matroid. It is then safe to denote
the matroid by ∆(C),
• the rank of the matroid is n− k,
• the two sets of di de�ned in this section coincide.

A simplicial complex ∆ on the �nite ground set E is a subset of 2E closed under taking
subsets. We refer to [6] for a brief introduction of the theory of simplicial complexes, and
we follow their notation. A matroid is in a natural way a simplicial complex through its
set of independent sets. Given a simplicial complex ∆ on the ground set E, de�ne its
Stanley-Reisner ideal and ring in the following way: let K a �eld and let S = K[x] be the
polynomial ring over K in |E| indeterminates x = {xe| e ∈ E}. Then the Stanley-Reisner
ideal I∆ of ∆ is

I∆ =< xσ| σ 6∈ ∆ >

and its Stanley-Reisner ring is R∆ = S/I∆. This ring has a minimal free resolution as a
NE-graded module

(1) 0←− R∆
∂0←− P0

∂1←− P1 ←− · · ·
∂l←− Pl ←− 0

where each Pi is of the form

Pi =
⊕
α∈NE

S(−α)βi,α .

Here, P0 = S. The βi,α are called the NE-graded Betti numbers of ∆. We have βi,α = 0
if α ∈ NE − {0, 1}E . The Betti numbers are independent of the choice of the minimal free
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resolution, and for matroids, are also independent of the chosen �eld K ([1]). We can also
look at R∆ as a N-graded module or an ungraded module. The N-graded and ungraded
Betti numbers of ∆ are then respectively the

βi,d =
∑
|α|=d

βi,α

and the

βi =
∑
d

βi,d.

A code C gives rise to a matroid, and in turn to a simplicial complex. We shall refer to
the Stanley-Reisner ring of the code as R(C) = R∆(C).

Our results are as follows. We start in Section 2 bying giving two straightforward state-
ments (Proposition 2.1 and Corollary 2.2) which enable us to conclude that a code is of
constant weight using di�erent assumptions than those in [5]. In Section 3, we investigate
a combinatorial relation on the number of points of grassmannian sets. These intermediate
results will be instrumental for our main result. In Section 4 we prove the main result of
the paper, Theorem 4.1, which partly builds on, and partly generalizes the result from [5].
We determine the N-graded Betti numbers of the Stanley-Reisner rings associated to the
underlying matroid structures of constant weight codes. As shown in [4], we can derive the
weight hierarchy of the code from its N-graded Stanley-Reisner resolution. In particular we
�nd that for constant weight codes these rings have pure (but not linear) resolutions. We
also �nd a converse, that constant weight codes are characterized by that these associated
rings have N-graded Betti numbers of the given form; in particular it is enough to �nd
the �rst Betti number. At the end we show that the converse doesn't hold if we restrict
ourselves to study ungraded resolutions.

2. The weight hierarchy of a constant weight linear code

The weight hierarchies of contant weight codes were found in [5]. There one proves the
results by investigating value functions, and apply their results to a speci�c such value
function. We will just restate it here, and refer to [5]. Afterwards, we will give a converse,
namely that a code with a given weight hierarchy is of constant weight.

Theorem 2.1. Let C be a k-dimensional linear code over Fq. Let 1 6 s 6 k − 1. Suppose

that all the s-dimensional linear subcodes of C have the same weight ds. Then for every

0 6 t 6 k, and every linear subcode Dt of dimension t of C, we have

w(Dt) = dt = ds
qk − qk−t

qk − qk−s
.

This shows that being constant weight is the same as being constant weight in any
dimension, except in dimension 0 and dimension k.

Corollary 2.1. Let C be a k-dimensional linear code over Fq. Suppose that C is of constant

weight. Then the weight hierarchy (d1, ..., dk) is given by

di = d
qk − 1

qk−1(q − 1)
,

where d is the weight of any non-zero codeword.
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Example 2.1. Let C be the ternary code given by the generator matrix

G =

1 0 1 2 0 1 2 0 1 2 0 1 2
0 1 1 1 0 0 0 1 1 1 2 2 2
0 0 0 0 1 1 1 1 1 1 1 1 1


This a constant weight code with weight 9. Its weight hierarchy is

(d1, d2, d3) = (9, 12, 13).

The converse of this corollary is also true, namely, if a linear code has the weight hierarchy
of a constant weight code, then it is itself a constant weight code. But there is an even
stronger converse:

Proposition 2.1. Let C be a [n, k, d]q-code. Assume that dk = qk−1
qk−i(qi−1)

di for some 1 6

i < k. Then C is a constant weight code with weight dk
qk−1(q−1)
qk−1

.

Proof. The proof is based on an easy corollary of lemma 1 in [5]. We keep their notation.

Nr,1m(PG(k − 1, q)) 6 Nrϑ

and there is equality if and only if all the r-dimensional projective subspaces have the same
value ϑ. Since

di = dk −max{m(Pk−i), Pk−i is a (k − i)-dimensional projective subspace},

this amounts to

dk > di
qk−1

qk−i(qi − 1)

with equality if and only if all the (k − i)-dimensional subspaces have the same value, or
equivalently if and only if all the i-dimensional subcodes of C have the same weight. The
proposition then follows from Theorem 1 in [5]. �

Corollary 2.2. Let C be linear code over Fq of dimension k. Assume that there exist a

integer α such that

di = α
qi − 1

qi−1(q − 1)
∀1 6 i 6 k.

Then C is constant weight, of weight α.

Remark 2.1. The Griesmer bound says that for a [n, k, d]q code, then dk >
∑k−1

i=0 d
d
qi
e. It

is obvious that constant weight codes meet their Griesmer bound. The previous corollary
could indicate that the converse is true. But it is not. Consider the [5, 2, 3]2 code given by
the generator matrix [

1 1 1 0 0
0 0 1 1 1

]
This is not a constant weight code, but it reaches its Griesmer bound.

3. A combinatorial relation on the Grassmannian

A Grassmannian is a space that parametrizes all the linear subspaces of a given dimension
of a vector space. Translated to coding theory, a Grassmannian is a space that parametrizes
all the linear subcodes of a given dimension of a linear code. Given a [n, k, d]q code C and
0 6 r 6 k, we denote by g(r, k) the cardinality of the set Cr(C) (which is just dependent
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on the cardinality of the ground �eld and on the dimensions of the code and subcodes). It
is well known that

g(r, k) =
f(k, q)

f(k, q)f(k − r, q)

where f(n, q) =
∏n
i=1(qi − 1). Since there is no way of misinterpretation, we will remove

the q from f in the sequel.
This section gives a combinatorial relation on the Grassmannian, that will be used in the

next section when we compute the Stanley-Reisner resolution of a constant weight code.

Proposition 3.1. Let C be a [n, k, d]q code. Then

k−1∑
i=0

(−1)k+1−ig(i, k)q
i(i−1)

2 = q
k(k−1)

2 .

We will need the following technical lemmas to prove the result. The proofs are left to
the reader.

Lemma 3.1. Let 0 6 i 6 k − 2. De�ne

r(i, k) = g(i, k)− g(i, k − 2)qi.

Then

r(i+ 1, k + 1)− g(i, k − 1) = qk−ig(i, k).

Lemma 3.2. If k > 1, then

g(k, k + 1)− g(k − 1, k − 1) = q · g(k − 1, k).

We are now able to prove our proposition:
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Proof. This is done recursively. It is obviously true for k = 1, 2. Then compute

k∑
i=0

(−1)k−ig(i, k + 1)q
i(i−1)

2 =
k−1∑
i=0

(−1)k−i
(
r(i, k + 1) + qig(i, k − 1)

)
q
i(i−1)

2

+g(k, k + 1)q
k(k−1)

2

=
k−1∑
i=0

(−1)k−ir(i, k + 1)q
i(i−1)

2

+

k−1∑
i=0

(−1)k−ig(i, k − 1)q
i(i+1)

2 + g(k, k + 1)q
k(k−1)

2

=
k−2∑
i=0

(−1)k+1−i (r(i+ 1, k + 1)− g(i, k − 1)) q
i(i+1)

2

−g(k − 1, k − 1)q
k(k−1)

2 + g(k, k + 1)q
k(k−1)

2

=
k−2∑
i=0

(−1)k+1−iqk−ig(i, k)qiq
i(i−1)

2

+q · g(k − 1, k)q
(k−1)(k−2)

2 qk−1

= qk

(
k−1∑
i=0

(−1)k+1−ig(i, k)q
i(i−1)

2

)
= qkq

k(k−1)
2 = q

k(k+1)
2 .

�

4. Betti numbers of the Stanley-Reisner resolution associated to a

constant weight linear code

We are now able to give the N-graded resolution of a constant weight linear code. We use
the notation of [4]. As shown there, the Nn-graded Betti number βi,σ of the Stanley-Reisner
resolution of the matroid associated to the code are all zero, except for those subsets σ of
the ground set that are minimal (for the inclusion relation) such that #σ − rank(σ) = i.
We denote by Ni the set of such σ. Our �rst goals in this section are to show that if σ ∈ Ni,
then σ = Supp(C ′) for a subcode C ′ of C of dimension i, and then to prove that there is a
one-to-one correspondance between subcodes and their supports.

The �rst part of our plan is valid for any code:

Lemma 4.1. Let C be a [n, k, d]q code. Let 0 6 i 6 k and σ ∈ Ni. Then there exists a

subcode C ′ of C of dimension i such that

σ = Supp(C ′).

Proof. Any circuit of the associated matroid is the support of a codeword. Namely a circuit
is a minimal dependent subset of the columns of a parity check matrix, and this corresponds
to a codeword (the converse is not true - see Example 4.1). Since σ ∈ Ni, we know from [4]
that there exists a non-redundant set of i circuits τ1, · · · , τi such that

σ =
i⋃

j=1

τj .
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As any circuit is the support of a codeword, we have found i codewords c1, · · · , ci such that

σ =
i⋃

j=1

Supp(cj) = Supp(< c1, · · · , ci >).

It just remains to show that the subcode generated by these codewords is of dimension i.
The non-redundancy property is the same as saying that there exists i points {x1, · · · , xi}
in {1, · · · , n} such that xl ∈ Supp(cm) if and only if l = m. If

∑i
j=1 λjcj = 0 , then for

every 1 6 l 6 i,
(∑i

j=1 λjcj

)∣∣∣
xl

= λlcl|xl = 0 which implies that λl = 0. �

Lemma 4.2. Let C be a [n, k, d]q code. Then for any subcode C ′ of C, we have that

dim(C ′) = rank(Supp(C ′)).

Proof. See [7], Proposition 1.1.1. �

The following is generally not valid for general codes, but is for constant weight codes.

Lemma 4.3. Let C be a constant weight [n, k, d]q code. Let C ′ be a subcode and c be a

codeword. Then we have

c ∈ C ′ ⇔ Supp(c) ⊂ Supp(C ′).

Proof. One way is trivial. Assume now that Supp(c) ⊂ Supp(C ′). Write C ′ =< c1, · · · , ci >
where the cj 's are linearly independant. Let x ∈ Supp(c). We can assume that c|x = 1.
Consider the following codewords:

c′j = cj − (cj |x) c,

and the subcode C ′′ =< c′1, · · · , c′i >. It is obvious that Supp(C ′′) ⊂ Supp(C ′)−{x}. From
Theorem 2.1, we know that

#Supp(C ′) = di,

and therefore Supp(C ′′) < di. Theorem 2.1 again shows that the dimension of the code C ′′

is strictly less that i, or equivalently that c ∈ C ′. �

Proposition 4.1. Let C be a constant weight [n, k, d]q code. Then the mapping

{Subcodes of C} −→ 2{1,··· ,n}

C ′ 7−→ Supp(C ′)

is injective.

Proof. Indeed, if Supp(C) = Supp(C ′), then any codeword of C is in C ′ and vice versa. �

Example 4.1. The converses of Lemma 4.3 and Proposition 4.1 are not true. Consider
namely the binary code given by the generator matrix1 0 0 1 0

0 1 0 1 0
0 1 1 0 1

 .
Then c1 = (1, 1, 1, 1, 1) is a codeword whose support is {1, 2, 3, 4, 5}. The subcode generated
by the codewords c2 = (1, 1, 0, 0, 0) and c3 = (0, 0, 1, 1, 1) has also support {1, 2, 3, 4, 5}.
But c2 /∈< c1 > and < c1 >6=< c2, c3 >. Moreover, even if {1, 2, 3, 4, 5} is the support
of a codeword, this is not a circuit in the associated matroid (since it contains a smaller
dependent subset, for example {3, 4, 5} = Supp(c3).
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Proposition 4.2. Let C be a constant weight [n, k, d]q code. Let 0 6 i 6 k. then

Ni =
{
Supp(C ′), C ′ is a subcode of dimension i

}
.

Proof. One inclusion is lemma 4.1. Let now C ′ be a subcode of dimension i. Then by
Theorem 2.1, we know that #Supp(C ′) = di. If it wasn't in Ni, then there would exists a
subset X ( Supp(C ′) such that X ∈ Ni. By Lemma 4.1 again, we would �nd a subcode
C ′′ of dimension i such that Supp(C ′′) = X. But again by Theorem 2.1, we would get that

di = #Supp(C ′′) = #X < #Supp(C ′) = di

which is absurd. �

We can now prove the main theorem of this section, namely a description of the Stanley-
Reisner resolution of the matroid associated to a constant weight code. From Proposition 4.2
we know that the non-zero contributions to the term of homological degree i in the Stanley-
Reisner resolution of the matroid ∆ associated to a constant weight linear code C come
from its subcodes of dimension i. We also know ([6], corollary 5.12) that

βi,σ = h̃|σ|−i−1(∆|σ,K).

Let ∆′ be the simplicial complex where the facets are the independent sets of the ma-
troid ∆(HC′), for HC′ a parity check matrix of C ′ (for example obtainable by adding an
appropriate number of rows to HC′ .

Lemma 4.4. Let C ′ be a subcode of a linear code C of constant weight. If σ ⊂ Supp(C ′),
then ∆′|σ = ∆|σ. In particular

βi,σ(R(C ′)) = βi,σ(R(C)).

Proof. Clearly, if some columns of HC indexed by a subset τ of σ are independent, then
the corresponding columns of HC′ are independent. If, on the other hands the columns of
HC indexed by such a τ are dependent, then there is a codeword c ∈ C with support inside
τ ⊂ σ ⊂ Supp(C ′). By Lemma 4.3 we then have c ∈ C ′. Hence the columns indexed by τ
are dependent in HC′ also. Hence the lemma holds. �

Example 4.2. The previous lemma doesn't necessarily hold if the code is not constant
weight. For the code given in Example 4.1, the matroid ∆ associated to it has basis set

{{1, 5}, {2, 5}, {1, 3}, {3, 5}, {2, 3}, {3, 4}, {4, 5}}
while the subcode generated by c2, c3 has a associated matroid ∆′ with basis set

{{1, 3, 5}, {2, 3, 4}, {1, 4, 5}, {2, 4, 5}, {2, 3, 5}, {1, 3, 4}}.
Take σ = {1, 2, 3, 4, 5}. Then ∆|σ = ∆ 6= ∆′ = ∆′|σ.

Using Lemma 4.4 and Proposition 4.2 we then see that to be able to compute the values
of βi,σ (for all i) it is enough to be able to compute

βdim(C),Supp(C)(R(C))

for any constant weight code C (with C ′ from Lemma 4.4 in the place of C). We now do
that:

Lemma 4.5. Let C be be a constant weight [n, k, d]q code. Then

βk,Supp(C) = q
k(k−1)

2 .
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Proof. We do it recursively on the dimension k of the code. It is trivial for k = 0. For
k = 1, the associated matroid is the uniform matroid U(d, d − 1) and the result follows.
Suppose that we have proved our result for all constant weight codes of dimension less than
k. Let C = [n, k, d]q be a constant weight code. Then we know by Proposition 4.2 that the
Nn-Stanley-Reisner resolution of the code is

0← R(C)← S ←
⊕

C′∈C1(C)

S(−Supp(C ′))β1,Supp(C′) ← · · ·

←
⊕

C′∈Ck−1(C)

S(−Supp(C ′))βk−1,Supp(C′) ← S(−Supp(C))βk,Supp(C) ← 0.

Now, the recursion hypothesis, Lemma 4.4, and the fact that there are exactly g(i, k)
subcodes of dimension i, give that the ungraded resolution is

0← R(C)← S ← Sg(1,k)q
1(1−1)

2 ← · · · ← Sg(k−1,k)q(k−1)(k−2)2 ← SβSupp(C),k ← 0.

In this resolution we study the terms of degree |Supp(C)| in the Hilbert polynomials of each
of the terms. The alternating sum is zero (as is the contribution from R(C)), so

0 =

(
k−1∑
i=0

(−1)ig(i, k)q
i(i−1)

2

)
+ (−1)kβSupp(C),k

and from Proposition 3.1, this gives

βSupp(C),k = q
k(k−1)

2 .

�

Theorem 4.1. Let C be be a constant weight [n, k, d]q code. Then the N-graded Stanley

Reisner resolution of the matroid associated to the code is

0← R(C)← S ← · · · ← S(−di)g(i,k)q
i(i−1)

2 ← · · · ← 0,

where di = d qi−1
qi−1(q−1)

for 1 6 i 6 k.

Example 4.3. Take the same code as in Example 2.1. Then the Stanley-Reisner resolution
of the matroid associated to C is

0← R(C)← S ← S(−9)13 ← S(−12)39 ← S(−13)27 ← 0.

Of course, since the N-graded Stanley-Reisner resolution gives the weight hierarchy, the
converse of the previous corollary is true. But there is a stronger converse:

Proposition 4.3. Let C be a [n, k, d]q linear code. Suppose that the Stanley-Reisner reso-

lution of its associated matroids starts like

0← R(C)← S ← S(−d)g(1,k) ← · · ·
Then C is a constant weight code of weight d.

Proof. Since in homology degree 1, the contribution of any subset σ of the matroids ground
set is 1 if σ is a circuit, and 0 otherwise, the start of the resolution tells us that there are
exactly g(1, k) circuits of weight d. We know that any circuit of the matroid corresponds
to a vector space generated by a codeword. So this tells us that there are at least g(1, k)
subspaces generated by a single codeword. But there are g(1, k) subspaces of dimension 1,
which means that all the subspaces of dimension 1 are generated by a codeword of weight
d. �
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We know the N-graded Stanley-Reisner resolution of a constant weight linear code. As
such, we also know the ungraded Stanley-Reisner resolution (just remove the twists since
this is a pure resolution). A natural question would be to determine whether a code with
such a ungraded Stanley-Reisner resolution is constant weight. The answer is no, as the
following example shows.

Example 4.4. Let C be the [4, 2, 2]2 code de�ned by the generator matrix[
1 1 0 0
0 1 1 1

]
.

Then the N-graded Stanley Reisner resolution of its associated matroid is

0← R(C)← S ← S(−2)⊕ S(−3)2 ← S(−4)2 ← 0.

Then the ungraded Stanley-Reisner resolution would be

0← R(C)← S ← S3 ← S2 ← 0

which is the also ungraded Stanley-Reisner resolution associated to the [4, 2, 2]2 constant
weight code de�ned by the generator matrix[

1 0 1 0
0 1 1 0

]
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