Betti numbers of skeletons

Jan RoksvolfiHugues Verdure

UiT The Arctic University of Norway, Department of Matherosit
and Statistics,
N-9037 Tromsg, Norway

February 23, 2015

Abstract

We demonstrate that the Betti numbers associated pagraded minimal
free resolution of the Stanley-Reisner ri8gl 5« 1) of the (d — 1)-skeleton

of a simplicial complexA of dimensiond can be expressed asZalinear

combination of the corresponding Betti numbersiof An immediate im-
plication of our main result is that the projective dimemsaf S/1,-1 is at

most one greater than the projective dimensio8/df, and it thus provides
a new and direct proof of this. Our result extends immedjateimatroids
and their truncations. A similar result for matroid elongas can not be
hoped for, but we do obtain a weaker result for these.
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1 Introduction

In this paper we investigate certain aspects of the relghipnbetween aiNg-
graded minimal free resolution of the Stanley-Reisner oigsimplicial complex
and those associated to its skeletons. Our main result isréme3.1, which says
that each of the Betti numbers associated tdlgigraded minimal free resolution
of S/1w-1), Wherel a1 is the ideal generated by monomials corresponding to
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nonfaces of théd — 1)-skeleton of a finite simplicial compleX, can be expressed
as aZ-linear sum of the Betti numbers associate®ttn.

Previous results on the Stanley-Reisner rings of skeldtarigde the classic
[8, Corollary 2.6] which states that

depthS/Ip = max{j : AU s Cohen-Macauléey. (1)

This result was later generalized to monomial ideal$ fin [@o8ary 2.5]. By the
Auslander-Buchsbaum identity, it follows from (1) that

p.d. Ip <p.d. S/|A<d*1) <1+p.d. S/'A

From the latter of these inequalities it is easily demonsttaagain by using the
Auslander-Buchsbaum identity, that every skeleton of agdeMacauley simpli-
cial complex is Cohen-Macauley - a fact which was proved inJ8rollary 2.5]
as well.

That pd. S/lya-1 < 1+ p.d. S/Ix can also be seen as an immediate conse-
quence of our main result, and Theorem 3.2 thus provides anewdirect proof
of this and therefore also of the fact that the Cohen-Magauieperty is inherited
by skeletons.

The projective dimension of Stanley-Reisner rings has seeent research
interest. Most notably, it was demonstrated in/ [12, Corgl&a33] that

p.d. S/Ia > max{|C| : C is a circuit of the Alexander dué{* of A},

with equality if S/l is sequentially Cohen-Macauley.

Our main result extends immediately to a matrgidind its truncations. Such
matroid truncations have themselves seen recent resedsriast. An example
of this being [10], which contains the strengthening of ailtelsy Brylawski [4,
Proposition 7.4.10] concerning the representability ohtations.

Corresponding to our main result applied to matroid truiocat we give a
considerably weaker result concerning matroid elongatidnsays that the Betti
table associated to the elongatiorivbfto rankr (M) + 1 is equal to the Betti table
obtained by removing the second column from the Betti tablg/ty - but only
in terms of zeros and nonzeros.

1.1 Structure of this paper

¢ In Sectiori 2 we provide definitions and results used later on.
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e In Section(8 we demonstrate that the Betti numbers assdctata Np-
graded minimal free resolution of the Stanley Reisner riing skeleton can
be expressed aszalinear combination of the corresponding Betti numbers
of the original complex. This leads immediately to a new amdat proof
that the property of being Cohen-Macauley is inherited fribia original
complex.

e In Sectiorl 4 we see how our main result applies to truncatiémnsatroids.
We also explore whether a similar result can be obtained fdraoid elon-
gations.

2 Preliminaries

2.1 Simplicial complexes

Definition 2.1. A simplicial complexA onE = {1,...,n} is a collection of subsets
of E that is closed under inclusion.

We refer to the elements & as thefacesof A. A facetof A is a face that is
not properly contained in another face, while@faces a subset oE that is not
a face.

Definition 2.2. If X C E, thenAx = {0 C X: 0 € A} is itself a simplicial com-
plex. We refer td\x as therestriction ofA to X.

Definition 2.3. Let m be the cardinality of the largest face containeXi E.
Thedimensiorof X is dim(X) = m—1.

In particular, the dimension of a faceis equal tgo| — 1. We define dinfd) =
dim(E), and refer to this as the dimension/f

Definition 2.4 (Thei-skeleton ofA). For 0< i < dim(A), let thei-skeletomA() be
the simplicial complex

AV = o en:dim(o) <i}.
In particular, we hava(@ = A. The 1-skeletod( is often referred to as the

underlying graph oA.

Remark.Whenevero € N the expressiofno| shall signify the sum of the coor-
dinates ofo. When, on the other hand;, C {1...n}, the expressiono| denotes
the cardinality ofo.



2.2 Matroids

There are numerous equivalent ways of defining a matroid. tast convenient
here to give the definition in terms of independent sets. Ronaoduction to
matroid theory in general, we recommend €.g! [13].

Definition 2.5. A matroid M consists of a finite séE and a non-empty sétM)
of subsets oE such that:

e | (M) is a simplicial complex.

o If 11,12 € (M) and|l1| > |2, then there is am € |1\ 1 such that, Ux €
I(M).

The elements df(M) are referred to as thadependent se{ef M). Thebases
of M are the independent sets that are not contained in any oithepéndent set;
in other words, the facets #fM). Conversely, given the bases of a matroid, we
find the independent sets to be those sets that are contaiadubisis. We denote
the bases ¥l by B(M). It is a fundamental result that all bases of a matroid have
the same cardinality, which implies thdM) is apure simplicial complex.

The dual matroidM is the matroid orE whose bases are the complements of
the bases di. Thus

B(M)={E~B:BeB(M)}.
Definition 2.6. For X C E, the rank functiomy, of M is defined by
rm(X) =max{|l|:1 € (M)l CX}.

Whenever the matroit¥l is clear from the context, we omit the subscript and
write simplyr(X). The rankr (M) of M itself is defined as(M) = ry(E). When-
everl (M) is considered as a simplicial complex we thus hegv€) = dim(X) + 1
forall X C E, andr(M) =dim(lI(M)) + 1.

Definition 2.7. If X CE, then{l C X:1 € I(M)} form the set of independent sets
of a matroidM,x onX. We refer toM as therestriction of M to X

Definition 2.8 (Truncation) Theit" truncationM() of M is the matroid orE
whose independent sets consist of the independent s#stludit have rank less
than or equal to(M) —i. In other words

LMY = {X CE:r(X)=|X|,r(X)<r(M)—i}.
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Observe tham() = | (M)(FM=i-1) '\whenevet (M) is considered as a simpli-
cial complex. That is, thé" truncation corresponds to tlig — i)-skeleton.

Definition 2.9 (Elongation) For 0<i < n-—r(M), letM;; be the matroid whose
independent sets atéM;)) = {0 € E:n(0) <i}.

Sincer(M)) = r(M) +1i, the matroidM;, is commonly referred to as the
elongationof M to rankr(M) +i. It is straightforward to verify that for €

[0,...,n—r(M)] we haveM ;; = M().

2.3 The Stanley-Reisner ideal, Betti numbers, and the reded
chain complex

Let A be an abstract simplicial complex &= {1,...,n}. Letk be a field, and
let S=k[xy,...,%n|. By employing the standard abbreviated notation

Xilxgz...xﬁn = xa

for monomials, we establish a-11 connection between monomials §fand
vectors inNg. Furthermore, identifying a subset Bfwith its indicator vector in
Ng (as is done in Definition 2.10 below) thus provides-allconnection between
squarefree monomials &and subsets dE.

Definition 2.10. Let I be the ideal irS generated by monomials corresponding
to nonfaces of\. That s, let

la=(X?:0¢AN).

We refer tolpy and S/l,, respectively, as th8tanley-Reisner idealnd Stanley-
Reisner ringof A.

Being a (squarefree) monomial ideal, the Stanley-Reisteslj and thus also
the Stanley-Reisner ring, permits both the stand&sdjrading and the standard
Ng-grading. Foib € Nj let S, be the 1-dimensiondt-vector space generated by
xP, and letS(a), S shifted bya, be defined by§(a), = Sarp. Analogously, for
j € Np let § be thek-vector space generated by monomials of degread let
S(j) be defined byS(j)i = S4j. For the remainder of this section IEtbe an
Ng-gradedS-module.



Definition 2.11. An (Ng- or No-)graded minimal free resolutionf N is a left
complex

0 o« F 2 Ry R 0

with the following properties:

Dacng S —a)Pia, NJ-graded resolution
o F=
| Djene X —j)Bi, No-graded resolution

e im@ =kerg_4 foralli > 2, andry/im ¢ = N (Exact)

e im@ C mK_; (Minimal)

(F_1)a (Degree preservingyg-graded case)
(F-1)j (Degree preservingyo-graded case)

It follow from [7} Theorem A.2.2] thathe Betti numbers associated toldof
or Ng-graded) minimal free resolution are unigue that any other minimal free
resolution must have the same Betti numbers. We may thergfithout ambi-
guity refer to{S; a(N;k)} and{B; j(N;k)}, respectively, as th&lj-graded and
No-graded Betti numbers ¢ (overk). Observe that

Bi.ilN;k) = Y Bia(N;k)

lal=]

where|a| = a;+ax+ - - - +an (see Remark 211, above). Note also that fofNgn
graded (that is, monomial) ideBC S, we have§; ¢(S/1;k) = Bi—1,0(1; k) for all
1,o=0
0,0#0

TheNp-graded Betti numbers & may be compactly presented in a so-called
Betti table

i >1,andBoo(S/1;k) =

0 1 |
il Boj(NLk)  Brjra(Nik) -+ B j(N; k)
BINI(k) = J+1| Boj+aNik) Brjro(Nik) -+ B j14a(N; k)
K BQk(i\l;lk) Bl,k—kl'(N;k) Bl,k—H'(N;k)

6



By the (gradedMHilbert Syzygy Theoreme havel =0 foralli >n. If i #0
butF =0 for alli > |, we refer td as thdengthof the minimal free resolution. It
can be seen from e.q@./[5, Corollary 1.8] that the length ofrzimmal free resolution
of N equals its projective dimension.@ N).

A sequencefy, ..., fy € (x1,X2,...,Xy) is said to be aegular N-sequencé
fir1is not a zero-divisor ot /(fiN+-- -+ fiN).

Definition 2.12. The depthof N is the common length of a longest regulér
sequence. Whenevaris Ng-graded the polynomials may be assumed to be ho-
mogeneous.

In general we have deptth < dim N, where dimN denotes the Krull dimen-
sion of N. The following is a particular case of the famoAisslander-Buchsbaum
Theorem

Theorem 2.1(Auslander-Buchsbaum)
p.d. N +depthN = n.
Proof. See e.g.[7, Corollary A.4.3]. O

Note that the Krull dimension dir8/I5 of S/l is one more than the dimension
of A (see|[7, Corollary 6.2.2]). The simplicial compléxis said to beCohen-
Macauleyif depthS/Ip = dimS/Ia. That is, if S/lp is Cohen-Macauley as an
S-module.

Definition 2.13. Let .%;(A) denote the set afdimensional faces df. That is,
Fi(b)={oel:|o|=i+1}.

Let k”i(® be the fredk-vector space o (A). The(reduced) chain complext
M overk is the complex

0 kP10 B L Pl & A0 . 2 T ®) o

where the boundary mags are defined as follows: With the natural ordering on
E, set signij,o) = (—1)"Lif j is ther!" element ofo C E, and let

5(0) =Y sign(j,0) o~ j.

jco

Extendingd k-linearly, we obtain &-linear map fromk”i(® to k%i-1(8),



Definition 2.14. Theith reduced homologgf A overk is the vector space

~

Hi(A k) = ker(&)/im(&41).

The following is one of the most celebrated results in thersection between
algebra and combinatorics.

Theorem 2.2(Hochster’s formula)
Bio(S/lak) = B-1,0(la k) = dimy H g i1 (A5 k).

Proof. Seel[11, Corollary 5.12] and[7, p. 81]. 0J

3 Betti numbers ofi-skeletons

Let A be ad-dimensional simplicial complex oft, ..., n}, and letk be a field. In
this section we shall demonstrate how each of the Betti nusnifeS/1, 1) can
be expressed asZalinear combination of the Betti numbers $fl,.

3.1 The first rows of the Betti table

Lemma 3.1. N N
Hi (861 k) = Fi(A9Y 5 k)

forall0<i<d-2.

Proof. By the definition of a skeleton we hav (4 ) = .% (A0, ;) and thus

alsok7i o) — 1%l o) forall =1 <i<d—1. In other words, the reduced
chain complexes oA, andA(dfl)‘a are identical except for in homological de-
greed. The result follows. O

Proposition 3.1. For alliand j <d+i—1we have

Bi.i(S/1a k) = Bij(S/1p@-1): k).



Proof. If j <d+i—1thenj—i—1<d-2. By Theoren_2]2 and Lemnia 8.1
then, we have

Bii(S/lak) = Bi.o(S/1a k)

lo]=]

=Y dimHgio1(86:k)
lo]=]

= 3 dimHig i1 (A9 Y 51 k)
lo]=]

= > Bio(S/lpe-1:k)

|o]=]

=B,j(S/1z@-1; k).

3.2 The final row of the Betti table

The Hilbert series 08/15 overk is H(S/Ia) = Ticz dimg (S/1a)i t'. Let fi(A) =
|-Zi(A)]. By [[7, Section 6.1.3, Equation (6.3)] we have

S o(-1)'yBLi(S/1a k)

On the other hand, we see from [7, Proposition 6.2.1] that

d+1 ¢ i
H(S/1a) = £=2 f<11(A_>I>Ei - "

Combined, these two equations imply

d+1 . . n . .
i fi_ (At (1—t)" = _;(—1)' > Bii(S/Ia k)t (2)

! J

and
n

d . . . .
Z) fig (A (a-n)" = 'Z)(_l>l > Bii(S/1pe-n; k)t 3)

i ]
Remark.From here on we shall employ the convention tihat O fori < 0, and
that (}) = 0 if one or both ofj andk is negative.
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Differentiating both sides of equation () d — 1 times, we get

d+1 n—d—1 n—d-—1 i(n—i)! i—nt-d-+1+ n—i—

%fll 'Zﬁ ( )(i—n—l—d+1—|—|)!(n—i_|)!t dritl (g —gn--
1 .

i; LA et

When evaluated at= 1, the left side of the above equation is 0 except when
i=d+1andl =n—d-1. Thus, we have

n

(_1)n—d—1(n_d — 1) (D) = .Z)(—J_)i | Zd 1,Bi7j(S/|A;1k) G- (ni!d EENTE
i= J=zn—d— .

and
A n+-d+i J - .
fa(Q) :i;)<_1) -+d +1j>nzd1 (n—d—l)ﬁ"J(S/lA’]k)'

Lemma 3.2. Foralliand j > d+i+2we have
Bi.j(S/1a k) =0.
Proof. If |o| > d+i+2, then|o|—i—1> dim(A) 4 1, which implies
dimy Hjgi—i—1(8)g; k) = 0.
So by Hochster’s formula we have thafjif> d +i+ 2 then

Bi(S/ak)= 5 Bio(S/lak) = Z.dimkﬁ|a|_i_1(A‘a;ﬂ<):o,

|oT=j lol=]
According to Proposition 311 and Lemial3.2, and becdygg = f;(A@-1)
for all i # d, subtracting equationl(3) from equation (2) yields

fa A" = § (1) (B g.i(S/18i k) — B (Sl i o) St

o[\/]:

_|_

( 1) Biarita(S/1as k)4,
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Let 1 < u < n. Differentiating both sides of the above equatib# u times yields

dtu d+u\ (d+D!(n—d-1! . n—d—1-
|< | )(I—u+1)!(n—d—1—|)!t| -y

! i—u
't

n d+i I

+ :g . B| i1 S/lA, )%t'u%ﬁl.

Evaluating at = 0, we get

, “ (d+w!(n—d—1)!
5*((—1) lfd(A)(u-l)!(ﬂ—d—U)!)

=(—1)" big(Bud+u(S/1a; k) — Budu(S/ -0 k) (d+u)!
+ (_1>u_1ﬁu—17d+u(S/IA; k)(d+u)!,

where
5 — 1, 1§u§n—d.
0, u>n—d

Summarizing the above:

Proposition 3.2. For 1 < u < n, we have

Bud+u(S/1pe-1:k) = Bud+u(S/1ark) — Bu-1,d+u(S/la k) + (n;il 1) 0,

where
5: ( ) ZI* ( )n+d+l+1Zj >n—d-1 (n_gj_l)Bi,j<S/|A;1k)7 1§ US n_d
0, u>n-—d.
Bringing together Propositiofis 3.1 dndl3.2, we get
Theorem 3.1.For alli > 1, we have
Bi.i(S/1a k), j<d+i-1
Bii(S/pa-1k) =% Biari(S/Iak) — B 1a+i(S/aik) + (018, j=d+i,
0, j>d+i—-1
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5 { fa(8) = SRoo(-D)™ M5 1o a1 (b g 1) Bei(S/Iak), 1<i<n-—d

0, i>n—d.
Example 3.1. Let T be one of the two irreducible triangulations of the real pro-
jective plane (see [1]) — namely the one corresponding tonalpeelding of the
complete graph on 6 vertices. Clearly then, we have6 andd = 2. The Betti
table ofS/It overFs is

B[S/I1](F3) =

wWN PR O
oo rlo
o ool
ocoolNn

o OO0 ow

0

H

0

H

5

In this casefq(A) = (3) Bra(S/1T;F3) — (3) B2s(S/11:Fs) + (3) Bas(S/I1:F3) =
10. By Theoreni 311, the Betti numbers®fi,, are

B174(S/|T<1) ;F3) =B14(S/17;F3) + (g) 0 =10+10.

3

Bo5(S/11); F3) =B25(S/I1:F3) — Br5(S/I7;F3) + ( . | =15+30.

WwN Wk

0=0-0+10

Bs6(S/11):F3) =B36(S/17:F3) — B2,6(S/I1:F3) + (
Ba7(S/11w); F3) =Ba7(S/I1;F3) — B3 7(S/IT;F3) + (

)
)526—0-1-30.
)

w

01 2 3 4

0/T 0 0 0 O
B[S/l;w](F3)= 1|0 0 0 0 O.
2|10 0 0 0 O

3|0 20 45 36 10

12



Remark.Observe that as

01 2 3 4
01 0 0 0O
1/0 0 O 0O
3/0 10 15 6 1
4/0 0 0 1 0

the simplicial compleX” of Exampld3.1L is an example of a pure simplicial com-
plex whose Betti numbers depend upon the field as opposed to what is the
case for matroids.

3.3 The projective dimension of skeletons

Let p.d. S/l denote the projective dimension $fl,. By Auslander-Buchsbaum
Theorem we have

p.d. S/1p =n—depthS/Ip
>n—dim S/l
=n—(d+1),

son—d—-1<p.d. S/Ip<n.
As for the skeletons, we have

Corollary 3.1.
p.d. S/IA(dfl) <1+p.d S/|A

Proof. Let p= p.d. S/Ia. By Propositioi 311 it suffices to show that
Bp+2.d+pr2(S/lpe-1:k) =0.

But by Theoreni 312, we have

Bp+2.d+p+2(S/1p@-1); k) =Bpr2.d+p+2(S/lark) — Bptr1.d+p+2(S/1a k) + 0
—0-0-5=0,

where the last equality is due o+ 2 > n—d. O

Corollary 3.2. If A is Cohen-Macauley, then soA$?—1),
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Proof. LetA be a simplicial complex with difi\) = d and deptlS/In = dim S/I.
As dimS/l,q-1) = d, we only need to prove that depBil ,«-1) = d as well.
Since depttB/I -1y <dim S/1 @ 1) = d, we have by the Auslander-Buchsbaum
Theorem that . S/1,@-1 > n—d. On the other hand, since
p.d. S/Ip =n—depthS/Ia

=n—dim S/l

=n—(d+1),
we see from Corollary 311 that@. S/1,4-1 < n—d. We conclude that

pd S/|A<d*1) =n-d

and, by Auslander-Buchsbaum again, that d&jth-1) = d. O

4 Betti numbers of truncations and elongations of
matroids

Let M be a matroid oq{1,...,n}, with r(M) = k. As was established inl[3], the
dimension ofHj(M; k) is in fact independent of the field . Thusfor matroids,
the (No- or Nj-graded) Betti numbers are not only unique, but independént
the choice of fieldWe shall therefore omit referring to or specifying a parac
field k throughout this section. By a slight abuse of notation wél slemote the
Stanley-Reisner ideal associated to the set of indepeséesi{tM) of M simply
by Im.

4.1 Truncations

Note that tha'" truncation ofM corresponds to thgk — i — 1)-skeleton ofl (M);
a fact which enables us to invoke Theorem| 3.1. In additiofgliows from [9,
Corollary 3(b)] that the minimal free resolutions 8fly have lengtin — k. We
thus have

Proposition 4.1. For all i, we have

Bi.i(S/Im);, j<k+i-2
Bik+i-1(S/Im) = Bi-1k+i-1(S/Im)

+<?:D <23;5(—1)”+k+” szn—k (nfk) Bu,v(S/|M)), J =k+i—1
0, j > k.

Bii(S/lyw) =
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4.2 Elongations

When it comes to elongations, the Betti numberligirovide far less information
about the Betti numbers ®fl ;) than what was the case with truncations. We do
however have the following.

Proposition 4.2. Fori > 1,

BL](IM“)) 7£ 0 = Bi—l,j(|M<|+1)) 7£ 0.

Proof. According to [9, Theorem 1], we have that
Bi.o(Im) #0 <= 0o is minimal with the property thaty (o) =i+ 1.

Sincef; j = > o]=] Bi.o, we see that

Bii(Im,,) #0
=
There is a0 such thato| = j ando is minimal with the property thaty, (o) =i+1
=
There is ao such thato| = j ando is minimal with the property thatMM) (o) =i
=

Bi*lvj(lM(Hl)) # 0.
O

In terms of Betti tables, this implies that when it comes tmzend nonzeros
the Betti table oﬂM(m) is equal to the table you get by deleting the first column
from the table ofy,. As the following counterexample (computed using MAGMA
[2]) demonstrates, there can be no result for elongatioatogous to Theorem

B.1.
Let M andN be the matroids of1,..., 8} with bases

B(M)={{1,3,4,6,7},{1,2,3,6,8},{1,2,3,4,8},{1,2,3,5,8},{1,2,5,6,8},
{1,2,3,4,7},{1,2,3,5,7},{1,2,5,6,7},{1,3,4,5,7},{1,3,4,6,8},
{1,2,4,6,8},{1,2,4,6,7},{1,3,4,5,8},{1,2,4,5,7},{1,4,5,6,7},
{1,2,3,6,7},{1,3,5,6,7},{1,4,5,6,8},{1,3,5,6,8},{1,2,4,5,8} }
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and

B(N) = {{1,3,4,6,7},{1,2,3,4,8},{1,2,3,5,8},{1,2,5,6,8},{1,2,3,4,7},
{1,2,3,5,7},{1,2,5,6,7},{1,3,4,5,7},{1,3,4,6,8},{1,2,4,6,8},
{1,2,4,6,7},{1,3,4,5,8},{1,2,4,5,7},{1,3,4,5,6},{1,2,4,5,6},
{1,3,5,6,7},{1,2,3,5,6},{1,2,3,4,6},{1,3,5,6,8},{1,2,4,5,8} }.

Both Iy andly have Betti table

U‘I-b(adl\)‘
OFr OoOr o
g b~ OO
A O OON

but WhiIeIM<l) has Betti table

the ideaIIN(l) has Betti table

1 2
5(2 0.
6|3 4

This shows that the Betti numbers associated to a matroidbtddatermine those
associated to its elongation.
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