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Abstract

We demonstrate that the Betti numbers associated to anN0-graded minimal
free resolution of the Stanley-Reisner ringS/I∆(d−1) of the (d−1)-skeleton
of a simplicial complex∆ of dimensiond can be expressed as aZ-linear
combination of the corresponding Betti numbers of∆. An immediate im-
plication of our main result is that the projective dimension of S/I∆(d−1) is at
most one greater than the projective dimension ofS/I∆, and it thus provides
a new and direct proof of this. Our result extends immediately to matroids
and their truncations. A similar result for matroid elongations can not be
hoped for, but we do obtain a weaker result for these.

1 Introduction

In this paper we investigate certain aspects of the relationship between anN0-
graded minimal free resolution of the Stanley-Reisner ringof a simplicial complex
and those associated to its skeletons. Our main result is Theorem 3.1, which says
that each of the Betti numbers associated to anN0-graded minimal free resolution
of S/I∆(d−1), whereI∆(d−1) is the ideal generated by monomials corresponding to
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nonfaces of the(d−1)-skeleton of a finite simplicial complex∆, can be expressed
as aZ-linear sum of the Betti numbers associated toS/I∆.

Previous results on the Stanley-Reisner rings of skeletonsinclude the classic
[8, Corollary 2.6] which states that

depthS/I∆ = max{ j : ∆( j−1) is Cohen-Macauley}. (1)

This result was later generalized to monomial ideals in [6, Corollary 2.5]. By the
Auslander-Buchsbaum identity, it follows from (1) that

p.d. I∆ ≤ p.d. S/I∆(d−1) ≤ 1+p.d. S/I∆.

From the latter of these inequalities it is easily demonstrated, again by using the
Auslander-Buchsbaum identity, that every skeleton of a Cohen-Macauley simpli-
cial complex is Cohen-Macauley - a fact which was proved in [8, Corollary 2.5]
as well.

That p.d. S/I∆(d−1) ≤ 1+ p.d. S/I∆ can also be seen as an immediate conse-
quence of our main result, and Theorem 3.2 thus provides a newand direct proof
of this and therefore also of the fact that the Cohen-Macauley property is inherited
by skeletons.

The projective dimension of Stanley-Reisner rings has seenrecent research
interest. Most notably, it was demonstrated in [12, Corollary 3.33] that

p.d. S/I∆ ≥max{|C| : C is a circuit of the Alexander dual∆∗ of ∆},

with equality ifS/I∆ is sequentially Cohen-Macauley.
Our main result extends immediately to a matroidM and its truncations. Such

matroid truncations have themselves seen recent research interest. An example
of this being [10], which contains the strengthening of a result by Brylawski [4,
Proposition 7.4.10] concerning the representability of truncations.

Corresponding to our main result applied to matroid truncations, we give a
considerably weaker result concerning matroid elongations. It says that the Betti
table associated to the elongation ofM to rankr(M)+1 is equal to the Betti table
obtained by removing the second column from the Betti table of S/IM - but only
in terms of zeros and nonzeros.

1.1 Structure of this paper

• In Section 2 we provide definitions and results used later on.
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• In Section 3 we demonstrate that the Betti numbers associated to aN0-
graded minimal free resolution of the Stanley Reisner ring of a skeleton can
be expressed as aZ-linear combination of the corresponding Betti numbers
of the original complex. This leads immediately to a new and direct proof
that the property of being Cohen-Macauley is inherited fromthe original
complex.

• In Section 4 we see how our main result applies to truncationsof matroids.
We also explore whether a similar result can be obtained for matroid elon-
gations.

2 Preliminaries

2.1 Simplicial complexes

Definition 2.1. A simplicial complex∆ onE = {1, . . . ,n} is a collection of subsets
of E that is closed under inclusion.

We refer to the elements of∆ as thefacesof ∆. A facetof ∆ is a face that is
not properly contained in another face, while anonfaceis a subset ofE that is not
a face.

Definition 2.2. If X ⊆ E, then∆|X = {σ ⊆ X : σ ∈ ∆} is itself a simplicial com-
plex. We refer to∆|X as therestriction of∆ to X.

Definition 2.3. Let m be the cardinality of the largest face contained inX ⊆ E.
Thedimensionof X is dim(X) = m−1.

In particular, the dimension of a faceσ is equal to|σ |−1. We define dim(∆)=
dim(E), and refer to this as the dimension of∆.

Definition 2.4 (Thei-skeleton of∆). For 0≤ i ≤ dim(∆), let thei-skeleton∆(i) be
the simplicial complex

∆(i) = {σ ∈ ∆ : dim(σ)≤ i}.

In particular, we have∆(d) = ∆. The 1-skeleton∆(1) is often referred to as the
underlying graph of∆.

Remark.Wheneverσ ∈ N
n
0 the expression|σ | shall signify the sum of the coor-

dinates ofσ . When, on the other hand,σ ⊆ {1. . .n}, the expression|σ | denotes
the cardinality ofσ .
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2.2 Matroids

There are numerous equivalent ways of defining a matroid. It is most convenient
here to give the definition in terms of independent sets. For an introduction to
matroid theory in general, we recommend e.g. [13].

Definition 2.5. A matroid M consists of a finite setE and a non-empty setI(M)
of subsets ofE such that:

• I(M) is a simplicial complex.

• If I1, I2 ∈ I(M) and|I1| > |I2|, then there is anx∈ I1r I2 such thatI2∪x∈
I(M).

The elements ofI(M) are referred to as theindependent sets(of M). Thebases
of M are the independent sets that are not contained in any other independent set;
in other words, the facets ofI(M). Conversely, given the bases of a matroid, we
find the independent sets to be those sets that are contained in a basis. We denote
the bases ofM by B(M). It is a fundamental result that all bases of a matroid have
the same cardinality, which implies thatI(M) is apuresimplicial complex.

The dual matroidM is the matroid onE whose bases are the complements of
the bases ofM. Thus

B(M) = {ErB : B∈ B(M)}.

Definition 2.6. ForX ⊆ E, the rank functionrM of M is defined by

rM(X) = max{|I | : I ∈ I(M), I ⊆ X}.

Whenever the matroidM is clear from the context, we omit the subscript and
write simplyr(X). The rankr(M) of M itself is defined asr(M) = rM(E). When-
everI(M) is considered as a simplicial complex we thus haver(X) = dim(X)+1
for all X ⊆ E, andr(M) = dim(I(M))+1.

Definition 2.7. If X ⊆E, then{I ⊆X : I ∈ I(M)} form the set of independent sets
of a matroidM|X onX. We refer toM|X as therestriction of M to X.

Definition 2.8 (Truncation). The ith truncationM(i) of M is the matroid onE
whose independent sets consist of the independent sets ofM that have rank less
than or equal tor(M)− i. In other words

I(M(i)) = {X ⊆ E : r(X) = |X|, r(X)≤ r(M)− i}.
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Observe thatM(i) = I(M)(r(M)−i−1), wheneverI(M) is considered as a simpli-
cial complex. That is, theith truncation corresponds to the(d− i)-skeleton.

Definition 2.9 (Elongation). For 0≤ i ≤ n− r(M), let M(i) be the matroid whose
independent sets areI(M(i)) = {σ ∈ E : n(σ)≤ i}.

Since r(M(i)) = r(M) + i, the matroidM(i) is commonly referred to as the
elongationof M to rank r(M) + i. It is straightforward to verify that fori ∈
[0, . . . ,n− r(M)] we haveM(i) = M(i).

2.3 The Stanley-Reisner ideal, Betti numbers, and the reduced
chain complex

Let ∆ be an abstract simplicial complex onE = {1, . . . ,n}. Let k be a field, and
let S= k[x1, . . . ,xn]. By employing the standard abbreviated notation

xa1
1 xa2

2 · · ·x
an
n = xa

for monomials, we establish a 1− 1 connection between monomials ofS and
vectors inNn

0. Furthermore, identifying a subset ofE with its indicator vector in
N

n
0 (as is done in Definition 2.10 below) thus provides a 1−1 connection between

squarefree monomials ofSand subsets ofE.

Definition 2.10. Let I∆ be the ideal inSgenerated by monomials corresponding
to nonfaces of∆. That is, let

I∆ = 〈xσ : σ /∈ ∆〉.

We refer toI∆ andS/I∆, respectively, as theStanley-Reisner idealandStanley-
Reisner ringof ∆.

Being a (squarefree) monomial ideal, the Stanley-Reisner ideal, and thus also
the Stanley-Reisner ring, permits both the standardN0-grading and the standard
N

n
0-grading. Forb ∈ N

n
0 let Sb be the 1-dimensionalk-vector space generated by

xb, and letS(a), S shifted bya, be defined byS(a)b = Sa+b. Analogously, for
j ∈ N0 let Si be thek-vector space generated by monomials of degreei, and let
S( j) be defined byS( j)i = Si+ j . For the remainder of this section letN be an
N

n
0-gradedS-module.
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Definition 2.11. An (Nn
0- or N0-)graded minimal free resolutionof N is a left

complex

0 ←−−− F0
φ1
←−−− F1

φ2
←−−− F2 ←−−− ·· ·

φl
←−−− Fl ←−−− 0

with the following properties:

• Fi =

{

⊕

a∈Nn
0
S(−a)βi,a,Nn

0-graded resolution
⊕

j∈N0
S(− j)βi, j ,N0-graded resolution

• imφi = kerφi−1 for all i ≥ 2, andF0/ imφ1
∼= N (Exact)

• imφi ⊆mFi−1 (Minimal)

•

φi
(

(Fi)a
)

⊆(Fi−1)a (Degree preserving,Nn
0-graded case)

φi
(

(Fi) j
)

⊆(Fi−1) j (Degree preserving,N0-graded case).

It follow from [7, Theorem A.2.2] thatthe Betti numbers associated to a (N0-
or Nn

0-graded) minimal free resolution are unique, in that any other minimal free
resolution must have the same Betti numbers. We may therefore without ambi-
guity refer to{βi,a(N;k)} and{βi, j(N;k)}, respectively, as theNn

0-graded and
N0-graded Betti numbers ofN (overk). Observe that

βi, j(N;k) = ∑
|a|= j

βi,a(N;k)

where|a|= a1+a2+ · · ·+an (see Remark 2.1, above). Note also that for anN
n
0-

graded (that is, monomial) idealI ⊆ S, we haveβi,σ(S/I ;k) = βi−1,σ (I ;k) for all

i ≥ 1, andβ0,σ (S/I ;k) =

{

1,σ = /0

0,σ 6= /0
.

TheN0-graded Betti numbers ofN may be compactly presented in a so-called
Betti table:

β [N](k) =

0 1 · · · l
j β0, j(N;k) β1, j+1(N;k) · · · βl , j+l(N;k)

j +1 β0, j+1(N;k) β1, j+2(N;k) · · · βl , j+l+1(N;k)
...

...
... · · ·

...
k β0,k(N;k) β1,k+1(N;k) · · · βl ,k+l(N;k)
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By the (graded)Hilbert Syzygy Theoremwe haveFi = 0 for all i ≥ n. If Fl 6= 0
butFi = 0 for all i > l , we refer tol as thelengthof the minimal free resolution. It
can be seen from e.g. [5, Corollary 1.8] that the length of a minimal free resolution
of N equals its projective dimension (p.d. N).

A sequencef1, . . . , fr ∈ 〈x1,x2, . . . ,xn〉 is said to be aregular N-sequenceif
fi+1 is not a zero-divisor onN/( f1N+ · · ·+ fiN).

Definition 2.12. The depthof N is the common length of a longest regularN-
sequence. WheneverN is N0-graded the polynomials may be assumed to be ho-
mogeneous.

In general we have depthN ≤ dim N, where dimN denotes the Krull dimen-
sion ofN. The following is a particular case of the famousAuslander-Buchsbaum
Theorem.

Theorem 2.1(Auslander-Buchsbaum).

p.d. N+depthN = n.

Proof. See e.g. [7, Corollary A.4.3].

Note that the Krull dimension dimS/I∆ of S/I∆ is one more than the dimension
of ∆ (see [7, Corollary 6.2.2]). The simplicial complex∆ is said to beCohen-
Macauleyif depthS/I∆ = dim S/I∆. That is, if S/I∆ is Cohen-Macauley as an
S-module.

Definition 2.13. Let Fi(∆) denote the set ofi-dimensional faces of∆. That is,

Fi(∆) = {σ ∈ ∆ : |σ |= i +1}.

Let kFi(∆) be the freek-vector space onFi(∆). The(reduced) chain complexof
M overk is the complex

0 ←− k

F−1(∆) δ0←− ·· · ←− k

Fi−1(∆) δi←− k

Fi(∆) ←− ·· ·
δdim(∆)
←−−− k

Fdim(∆)(∆) ←− 0,

where the boundary mapsδi are defined as follows: With the natural ordering on
E, set sign( j,σ) = (−1)r−1 if j is therth element ofσ ⊆ E, and let

δi(σ) = ∑
j∈σ

sign( j,σ) σ r j.

Extendingδi k-linearly, we obtain ak-linear map fromkFi(∆) to kFi−1(∆).

7



Definition 2.14. The ith reduced homologyof ∆ overk is the vector space

H̃i(∆;k) = ker(δi)/ im(δi+1).

The following is one of the most celebrated results in the intersection between
algebra and combinatorics.

Theorem 2.2(Hochster’s formula).

βi,σ(S/I∆;k) = βi−1,σ (I∆;k) = dim
k

H̃|σ |−i−1(∆|σ ;k).

Proof. See [11, Corollary 5.12] and [7, p. 81].

3 Betti numbers of i-skeletons

Let ∆ be ad-dimensional simplicial complex on{1, . . . ,n}, and letk be a field. In
this section we shall demonstrate how each of the Betti numbers of S/I∆(d−1) can
be expressed as aZ-linear combination of the Betti numbers ofS/I∆.

3.1 The first rows of the Betti table

Lemma 3.1.
H̃i(∆|σ ;k) = H̃i(∆(d−1)

|σ ;k)

for all 0≤ i ≤ d−2.

Proof. By the definition of a skeleton we haveFi(∆|σ) = Fi(∆(d−1)
|σ ) and thus

alsokFi(∆|σ ) = k

Fi(∆(d−1)
|σ ), for all −1≤ i ≤ d−1. In other words, the reduced

chain complexes of∆|σ and∆(d−1)
|σ are identical except for in homological de-

greed. The result follows.

Proposition 3.1. For all i and j ≤ d+ i−1 we have

βi, j(S/I∆;k) = βi, j(S/I∆(d−1);k).
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Proof. If j ≤ d+ i−1 then j − i−1≤ d−2. By Theorem 2.2 and Lemma 3.1
then, we have

βi, j(S/I∆;k) = ∑
|σ |= j

βi,σ(S/I∆;k)

= ∑
|σ |= j

dim
k

H̃|σ |−i−1(∆|σ ;k)

= ∑
|σ |= j

dim
k

H̃|σ |−i−1(∆(d−1)
|σ ;k)

= ∑
|σ |= j

βi,σ(S/I∆(d−1);k)

= βi, j(S/I∆(d−1);k).

3.2 The final row of the Betti table

The Hilbert series ofS/I∆ overk is H(S/I∆) = ∑i∈Zdim
k

(S/I∆)i t i. Let fi(∆) =
|Fi(∆)|. By [7, Section 6.1.3, Equation (6.3)] we have

H(S/I∆) =
∑n

i=0(−1)i ∑ j βi, j(S/I∆;k)

(1− t)n .

On the other hand, we see from [7, Proposition 6.2.1] that

H(S/I∆) =
∑d+1

i=0 fi−1(∆)t i(1− t)d+1−i

(1− t)d+1 .

Combined, these two equations imply

d+1

∑
i=0

fi−1(∆)t i(1− t)n−i =
n

∑
i=0

(−1)i ∑
j

βi, j(S/I∆;k)t j , (2)

and
d

∑
i=0

fi−1(∆(d−1))t i(1− t)n−i =
n

∑
i=0

(−1)i ∑
j

βi, j(S/I∆(d−1);k)t j . (3)

Remark.From here on we shall employ the convention thati! = 0 for i < 0, and
that

( j
k

)

= 0 if one or both ofj andk is negative.
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Differentiating both sides of equation (2)n−d−1 times, we get

d+1

∑
i=0

fi−1(∆)
n−d−1

∑
l=0

(−1)l
(

n−d−1
l

)

i!(n− i)!
(i−n+d+1+ l)!(n− i− l)!

t i−n+d+1+l (1− t)n−i−l

=
n

∑
i=0

(−1)i ∑
j

βi, j(S/I∆;k)
j!

( j− (n−d−1))!
t j−n+d+1.

When evaluated att = 1, the left side of the above equation is 0 except when
i = d+1 andl = n−d−1. Thus, we have

(−1)n−d−1(n−d−1)! fd(∆) =
n

∑
i=0

(−1)i ∑
j≥n−d−1

βi, j(S/I∆;k)
j!

( j− (n−d−1))!
,

and

fd(∆) =
n

∑
i=0

(−1)n+d+i+1 ∑
j≥n−d−1

(

j
n−d−1

)

βi, j(S/I∆;k).

Lemma 3.2. For all i and j ≥ d+ i +2 we have

βi, j(S/I∆;k) = 0.

Proof. If |σ | ≥ d+ i +2, then|σ |− i−1≥ dim(∆)+1, which implies

dim
k

H̃|σ |−i−1(∆|σ ;k) = 0.

So by Hochster’s formula we have that ifj ≥ d+ i +2 then

βi, j(S/I∆;k) = ∑
|σ |= j

βi,σ (S/I∆;k) = ∑
|σ |= j

dim
k

H̃|σ |−i−1(∆|σ ;k) = 0.

According to Proposition 3.1 and Lemma 3.2, and becausefi(∆) = fi(∆(d−1))
for all i 6= d, subtracting equation (3) from equation (2) yields

fd(∆)td+1(1− t)n−d−1 =
n

∑
i=0

(−1)i(βi,d+i(S/I∆;k)−βi,d+i(S/I∆(d−1);k)
)

td+i

+
n

∑
i=0

(−1)iβi,d+i+1(S/I∆;k)td+i+1.
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Let 1≤ u≤ n. Differentiating both sides of the above equationd+u times yields

fd(∆)
d+u

∑
l=0

(−1)l
(

d+u
l

)

(d+1)!(n−d−1)!
(l −u+1)!(n−d−1− l)!

t l−u+1(1− t)n−d−1−l

=
n

∑
i=u

(−1)i(βi,d+i(S/I∆;k)−βi,d+i+1(S/I∆(d−1);k)
)(d+ i)!
(i−u)!

t i−u

+
n

∑
i=u−1

(−1)iβi,d+i+1(S/I∆;k)
(d+ i +1)!
(i−u+1)!

t i−u+1.

Evaluating att = 0, we get

δ ′ ∗
(

(−1)u−1 fd(∆)
(d+u)!(n−d−1)!
(u−1)!(n−d−u)!

)

=(−1)u big(βu,d+u(S/I∆;k)−βu,d+u(S/I∆(d−1);k)
)

(d+u)!

+(−1)u−1βu−1,d+u(S/I∆;k)(d+u)!,

where

δ ′ =

{

1, 1≤ u≤ n−d

0, u> n−d
.

Summarizing the above:

Proposition 3.2. For 1≤ u≤ n, we have

βu,d+u(S/I∆(d−1);k) = βu,d+u(S/I∆;k)−βu−1,d+u(S/I∆;k)+

(

n−d−1
u−1

)

δ ,

where

δ =

{

fd(∆) = ∑n
i=0(−1)n+d+i+1 ∑ j≥n−d−1

( j
n−d−1

)

βi, j(S/I∆;k), 1≤ u≤ n−d

0, u> n−d.

Bringing together Propositions 3.1 and 3.2, we get

Theorem 3.1.For all i ≥ 1, we have

βi, j(S/I∆(d−1);k)=











βi, j(S/I∆;k), j ≤ d+ i−1

βi,d+i(S/I∆;k)−βi−1,d+i(S/I∆;k)+
(n−d−1

i−1

)

δ , j = d+ i,

0, j ≥ d+ i−1
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where

δ =

{

fd(∆) = ∑n
k=0(−1)n+d+k+1 ∑ j≥n−d−1

( j
n−d−1

)

βk, j(S/I∆;k), 1≤ i ≤ n−d

0, i > n−d.

Example 3.1. Let T be one of the two irreducible triangulations of the real pro-
jective plane (see [1]) – namely the one corresponding to an embedding of the
complete graph on 6 vertices. Clearly then, we haven= 6 andd = 2. The Betti
table ofS/IT overF3 is

β [S/IT ](F3) =

0 1 2 3
0 1 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 10 15 6

.

In this casefd(∆) =
(4

3

)

β1,4(S/IT ;F3)−
(5

3

)

β2,5(S/IT ;F3)+
(6

3

)

β3,6(S/IT ;F3) =
10. By Theorem 3.1, the Betti numbers ofS/IT(1) are

β1,4(S/IT(1);F3) =β1,4(S/IT ;F3)+

(

3
0

)

δ = 10+10.

β2,5(S/IT(1);F3) =β2,5(S/IT ;F3)−β1,5(S/IT ;F3)+

(

3
1

)

δ = 15+30.

β3,6(S/IT(1);F3) =β3,6(S/IT ;F3)−β2,6(S/IT ;F3)+

(

3
2

)

δ = 6−0+30.

β4,7(S/IT(1);F3) =β4,7(S/IT ;F3)−β3,7(S/IT ;F3)+

(

3
3

)

δ = 0−0+10.

β [S/IT(1) ](F3) =

0 1 2 3 4
0 1 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 20 45 36 10

.
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Remark.Observe that as

β [S/IT ](F2) =

0 1 2 3 4
0 1 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 10 15 6 1
4 0 0 0 1 0

,

the simplicial complexT of Example 3.1 is an example of a pure simplicial com-
plex whose Betti numbers depend upon the fieldk – as opposed to what is the
case for matroids.

3.3 The projective dimension of skeletons

Let p.d. S/I∆ denote the projective dimension ofS/I∆. By Auslander-Buchsbaum
Theorem we have

p.d. S/I∆ =n−depthS/I∆

≥n−dim S/I∆

=n− (d+1),

son−d−1≤ p.d. S/I∆ ≤ n.
As for the skeletons, we have

Corollary 3.1.
p.d. S/I∆(d−1) ≤ 1+p.d. S/I∆.

Proof. Let p= p.d. S/I∆. By Proposition 3.1 it suffices to show that

βp+2,d+p+2(S/I∆(d−1);k) = 0.

But by Theorem 3.2, we have

βp+2,d+p+2(S/I∆(d−1);k) =βp+2,d+p+2(S/I∆;k)−βp+1,d+p+2(S/I∆;k)+δ
=0−0−δ = 0,

where the last equality is due top+2> n−d.

Corollary 3.2. If ∆ is Cohen-Macauley, then so is∆(d−1).
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Proof. Let ∆ be a simplicial complex with dim(∆)= d and depthS/I∆ = dim S/I∆.
As dimS/I∆(d−1) = d, we only need to prove that depthS/I∆(d−1) = d as well.

Since depthS/I∆(d−1) ≤dim S/I∆(d−1) =d, we have by the Auslander-Buchsbaum
Theorem that p.d. S/I∆(d−1) ≥ n−d. On the other hand, since

p.d. S/I∆ =n−depthS/I∆

=n−dim S/I∆

=n− (d+1),

we see from Corollary 3.1 that p.d. S/I∆(d−1) ≤ n−d. We conclude that

p.d. S/I∆(d−1) = n−d

and, by Auslander-Buchsbaum again, that depthS/I∆(d−1) = d.

4 Betti numbers of truncations and elongations of
matroids

Let M be a matroid on{1, . . . ,n}, with r(M) = k. As was established in [3], the
dimension ofH̃i(M;k) is in fact independent of the fieldk . Thusfor matroids,
the (N0- or N

n
0-graded) Betti numbers are not only unique, but independentof

the choice of field. We shall therefore omit referring to or specifying a particular
field k throughout this section. By a slight abuse of notation we shall denote the
Stanley-Reisner ideal associated to the set of independentsetsI(M) of M simply
by IM.

4.1 Truncations

Note that theith truncation ofM corresponds to the(k− i−1)-skeleton ofI(M);
a fact which enables us to invoke Theorem 3.1. In addition, itfollows from [9,
Corollary 3(b)] that the minimal free resolutions ofS/IM have lengthn− k. We
thus have

Proposition 4.1. For all i, we have

βi, j(S/IM(1))=























βi, j(S/IM), j ≤ k+ i−2.

βi,k+i−1(S/IM)−βi−1,k+i−1(S/IM)

+
(n−k

i−1

)

(

∑n−k
u=0(−1)n+k+u ∑v≥n−k

( v
n−k

)

βu,v(S/IM)
)

, j = k+ i−1.

0, j ≥ k+ i.

14



4.2 Elongations

When it comes to elongations, the Betti numbers ofM provide far less information
about the Betti numbers ofM(1) than what was the case with truncations. We do
however have the following.

Proposition 4.2. For i ≥ 1,

βi, j(IM(l)
) 6= 0 ⇐⇒ βi−1, j(IM(l+1)

) 6= 0.

Proof. According to [9, Theorem 1], we have that

βi,σ(IM) 6= 0 ⇐⇒ σ is minimal with the property thatnM(σ) = i +1.

Sinceβi, j = ∑|σ |= j βi,σ , we see that

βi, j(IM(l)
) 6= 0

⇐⇒

There is aσ such that|σ |= j andσ is minimal with the property thatnM(l)
(σ) = i +1

⇐⇒

There is aσ such that|σ |= j andσ is minimal with the property thatnM(l+1)
(σ) = i

⇐⇒

βi−1, j(IM(l+1)) 6= 0.

In terms of Betti tables, this implies that when it comes to zeros and nonzeros
the Betti table ofIM(i+1)

is equal to the table you get by deleting the first column
from the table ofIMi . As the following counterexample (computed using MAGMA
[2]) demonstrates, there can be no result for elongations analogous to Theorem
3.1.

Let M andN be the matroids on{1, . . . ,8} with bases

B(M) =
{

{1,3,4,6,7},{1,2,3,6,8},{1,2,3,4,8},{1,2,3,5,8},{1,2,5,6,8},

{1,2,3,4,7},{1,2,3,5,7},{1,2,5,6,7},{1,3,4,5,7},{1,3,4,6,8},

{1,2,4,6,8},{1,2,4,6,7},{1,3,4,5,8},{1,2,4,5,7},{1,4,5,6,7},

{1,2,3,6,7},{1,3,5,6,7},{1,4,5,6,8},{1,3,5,6,8},{1,2,4,5,8}
}
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and

B(N) =
{

{1,3,4,6,7},{1,2,3,4,8},{1,2,3,5,8},{1,2,5,6,8},{1,2,3,4,7},

{1,2,3,5,7},{1,2,5,6,7},{1,3,4,5,7},{1,3,4,6,8},{1,2,4,6,8},

{1,2,4,6,7},{1,3,4,5,8},{1,2,4,5,7},{1,3,4,5,6},{1,2,4,5,6},

{1,3,5,6,7},{1,2,3,5,6},{1,2,3,4,6},{1,3,5,6,8},{1,2,4,5,8}
}

.

Both IM andIN have Betti table

0 1 2
2 1 0 0
3 0 0 0
4 1 4 0
5 0 5 4

,

but whileIM(1)
has Betti table

1 2
5 1 0
6 5 5

the idealIN(1)
has Betti table

1 2
5 2 0
6 3 4

.

This shows that the Betti numbers associated to a matroid do not determine those
associated to its elongation.
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