COMPLEX ANALYSIS (MA 214)
lecturer Boris Kruglikov
Books: ST: I. Stewart & D. Tall "Complex Analysis" (basic), L: S. Lang "Complex Analysis" (optional).
Lect. 1. Basics. ST Ch. 0-1 or L Ch. I, §1-3.
Sem. 1. See the list (also in ps).
Lect. 2. Topology. ST Ch. 2 or L Ch. I, §4.
Sem. 2. ST Ex.2: 3(i-iv),4(i,iii,v),6(i,ii,iv),8,9(i-iii),10(i-iv); L Ex.ch.I§3: 1,2,3.
Lect. 3. Power Series. ST Ch. 3 or L Ch. II, §2 (first part).
Sem. 3. ST Ex.3: 1(i-v),2(i-v),6,7,8(i-iv),11,13; L Ex.ch.I§4: 1,2,3,4,ch.II§2: 1,2,6.
Lect. 4. Differentiation. ST Ch. 4 or L Ch. I, §5-6, Ch. II, §5.
Sem. 4. ST Ex.4: 1(i-iii),2,3(i),5,6(i,ii),7(i,iii),9,14; L Ex.ch.II§5: 1,3.
Lect. 5. Exponential. ST Ch. 5, L Ch. II, §2 (second part).
Sem. 5. ST Ex.5: 1(i-iii),2(i-iii),3(i-ii),7(i,ii),10,11(i-iv),15(i,ii); L Ex.ch.II§5: 6(i).
Lect. 6. Integration. ST Ch. 6 or L Ch. III, §2-4.
Sem. 6. ST Ex.6: 1,2,4,5(i-iv),7,11,12,14(i),16(i-v); L Ex.ch.III§2: 3,4,5.
Lect. 7. The winding number. ST Ch. 7 or L Ch. III §6, Ch. IV §1.
Sem. 7. ST Ex.7: 1,3,6,7,8,10,15,16,19-22; L Ex. ch.III §6: 1,2,5, ch. IV §2: 3.
Lect. 8. Cauchy’s theorem. ST Ch. 8 or L Ch. III §1-4.
Sem. 8. ST Ex.8: 1-6; L Ex.ch.III§2: 4-6,8, ch.III§7: 1.
Lect. 9. Homotopy and Integral. ST Ch. 9 or L Ch. III §5, Ch. IV §2.
Sem. 9. ST Ex.9: 1,2,4,5,7(i,iii,iv); L Ex.ch.III§5: 1,4.
Lect. 10. Taylor expansion. ST Ch. 10 or L Ch. V §1.
Sem. 10. ST Ex.10: 1,3(i-iv),5,8,9(i),13,15,18; L Ex.ch.V§1: 3,4,9.
Lect. 11. Laurent expansion. ST Ch. 11, L Ch. V §2-3.
Sem. 11. ST Ex.11: 1(i-iii,v-vi),2(i-ii,iv-v),3(i-v),5,8(i-iii),9(i,iii,v)10,14(ii-iv),17, 18(iv-vi),22; L Ex.ch.V§2: 4-6,9,10,12, ch.V§3: 1,3.
Lect. 12. Integration via Residues. ST Ch. 12 or L Ch. VI §1, 2(first part).
Sem. 12. ST Ex.12: 1(i,ii,iv,v),2(i-iii),4,5(i-iv),6,8(i),10(i,ii),16(i),21,23,24,27; L Ex.ch.VI§1: 1-10,15,16,19,20(a,b),26(a-d), ch.VI§2: 1,2,3,5,14(a).
Remark. Additional chapters for lectures from L are optional, but for exercises would be better to do both ST and L.