
The Mathematics of Maps – Lecture 3

(A map hanging in my son’s kindergarten class a few years ago.)
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Wrong!

That map is completely wrong! Any country will undergo shape
distortion when dragged around the map!

Aside from illiteracy and innumeracy, we should recognize
“immappancy”. For a much better way to see a given country “all
over the world”, check out: The True Size of ...

What about Africa? It’s enormous... The True Size of Africa
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Visualizing distortion

At each point on the sphere, ∃ (perp.) “principal” directions along
which scaling is maximal and minimal.

Draw corresponding ellipse
(“Tissot’s indicatrix”) with axes along principal directions.

In Lecture 1, we discussed scale factors λm, λp along meridians and
parallels for “orthogonal maps”.

Conformal: λm = λp: indicatrices are circles

Equi-areal: λmλp = 1: indicatrices have same area
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Equi-areal maps
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Lambert azimuthal projection
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Lambert cylindrical (Archimedes) projection
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Gall–Peters projection
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Sinusoidal projection
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Mollweide projection
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Areas on the sphere

On the unit sphere, we have spherical polar coordinates

~f (θ, φ) = (cosφ cos θ, cosφ sin θ, sinφ)

Compute ~n = ~fθ × ~fφ. We find the area element

dA = |~n| dθ dφ = cosφ dθ dφ .

Let D = region btw latitudes φ1 ≤ φ2 & longitudes θ1 ≤ θ2. Then:

A(D) =

∫ θ2

θ1

∫ φ2

φ1

cosφ dφ dθ = (θ2 − θ1)(sinφ2 − sinφ1) (0.1)

Full sphere: take θ1 = −π, θ2 = π, φ1 = −π
2 , φ2 = π

2  A = 4π .
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Lambert azimuthal projection
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Lambert’s equi-areal azimuthal projection

In Lecture 1, we considered maps of the form R = f (φ), Θ = θ .

We calculated scale factors along the meridians and parallels

λm = |f ′(φ)|, λp = f (φ) secφ.

Let’s map the north pole to the origin, so require

f
(π

2

)
= 0, f ′(φ) < 0 for − π

2
< φ <

π

2
.

Equi-areal condition: λmλp = 1 . Get a differential equation:

−f (φ)f ′(φ) = cos(φ).

Let’s solve it! Integrate the DE wrt φ to get

−1

2
f (φ)2 = sin(φ) + C ⇒ C = −1.
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Lambert equi-areal azimuthal - 2

f (φ) =
√

2(1− sin(φ)) =

√
2
(

1− cos
(π

2
− φ

))
=

√
2

(
2 sin2

(
π

4
− φ

2

))
= 2 sin

(
π

4
− φ

2

)
using the double angle formula cos(2α) = 1− 2 sin2(α).

Note f (φ)
is positive and strictly decreasing on (−π

2 ,
π
2 ).
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Lambert equi-areal azimuthal - 3

R = 2 sin

(
π

4
− φ

2

)
, Θ = θ
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Lambert equi-areal azimuthal - 4

Projection recipe: Follow circular arcs with centre N through P to
the tangent plane at N.
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Lambert / Archimedes projection
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Lambert cylindrical (Archimedes) projection

7→

Recall ~f (θ, φ) = (cosφ cos θ, cosφ sin θ, sinφ). The map is simply:

Ψ : X = θ, Y = sinφ .

dX dY = cosφ dθ dφ
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Gall–Peters projection
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Gall–Peters

Along the equator, the Lambert cylindrical map has no length
distortion, but have severe shape distortion in the upper latitudes.

IDEA: Instead of a single std line (equator), have two std lines.

Fix φ0. Take map width to be 2π cos(φ0), i.e. the circumference of
parallels at latitude ±φ0. How to make this map equi-areal?

Map meridians to equally spaced vertical lines. Thus,
longitude θ corresponds to X = θ cos(φ0).

Map parallels to horizontal lines, so Y = f (φ) with f (0) = 0.

Area element: dXdY = cos(φ0)f ′(φ)dθdφ
Want

= cos(φ)dθdφ.

We get the IVP: f ′(φ) = cos(φ) sec(φ0), f (0) = 0 .

Solve it to get: f (φ) = sin(φ) sec(φ0).
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Gall–Peters - 2

Ψ :

{
X = θ cos(φ0); −π < θ < π;
Y = sin(φ) sec(φ0), −π

2 < φ < π
2

φ0 = 0: Archimedes / Lambert projection
φ0 = π

4 : Gall–Peters projection
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Sinusoidal projection
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Sinusoidal projection

Cylindrical projections: have severe shape distortion close to poles.

Sinusoidal projection (1570): Discard rectangular map shape.

Warning: Meridians & parallels are not ⊥ in the map! Properties:

Equi-areal

Parallels 7→ horizontal line segments in correct proportion.

Images of parallels are evenly spaced.

Images of meridians are evenly spaced.
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Images of parallels are evenly spaced.

Images of meridians are evenly spaced.
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Sinusoidal projection - 2

Parallel at latitude φ is mapped to a horizontal line segment
of width 2π cosφ, placed at a height Y = φ above the X -axis.

Meridian at longitude θ is mapped to the curve X = θ cos(Y )
for −π

2 ≤ Y ≤ π
2 .

Sinusoidal projection:

Ψ :

{
X = θ cos(φ), −π < θ < π;
Y = φ, −π

2 < φ < π
2
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Sinusoidal projection - 3

Let D = region btw latitudes φ1 ≤ φ2 & longitudes θ1 ≤ θ2.

Then

A(Ψ(D)) =

∫ φ2

φ1

(θ2 cos(φ)− θ1 cos(φ))dφ

= (θ2 − θ1)(sin(φ2)− sin(φ1)) = A(D),

Thus, the map is equi-areal. However, we can also arrive at this
infinitesimally...

Let ∧ denote an anti-symmetric operation, i.e.

dX ∧ dY = −dY ∧ dX , dX ∧ dX = 0 = dY ∧ dY .

Instead of dXdY , think of area element instead as dX ∧ dY .

dX ∧ dY = (−θ sinφdφ+ cos(φ)dθ) ∧ dφ = cos(φ)dθ ∧ dφ,

i.e. area element for the plane becomes area element for S2.

Dennis The The Mathematics of Maps – Lecture 3 24/31



Sinusoidal projection - 3

Let D = region btw latitudes φ1 ≤ φ2 & longitudes θ1 ≤ θ2. Then

A(Ψ(D)) =

∫ φ2

φ1

(θ2 cos(φ)− θ1 cos(φ))dφ

= (θ2 − θ1)(sin(φ2)− sin(φ1)) = A(D),

Thus, the map is equi-areal.

However, we can also arrive at this
infinitesimally...

Let ∧ denote an anti-symmetric operation, i.e.

dX ∧ dY = −dY ∧ dX , dX ∧ dX = 0 = dY ∧ dY .

Instead of dXdY , think of area element instead as dX ∧ dY .

dX ∧ dY = (−θ sinφdφ+ cos(φ)dθ) ∧ dφ = cos(φ)dθ ∧ dφ,

i.e. area element for the plane becomes area element for S2.

Dennis The The Mathematics of Maps – Lecture 3 24/31



Sinusoidal projection - 3

Let D = region btw latitudes φ1 ≤ φ2 & longitudes θ1 ≤ θ2. Then

A(Ψ(D)) =

∫ φ2

φ1

(θ2 cos(φ)− θ1 cos(φ))dφ

= (θ2 − θ1)(sin(φ2)− sin(φ1)) = A(D),

Thus, the map is equi-areal. However, we can also arrive at this
infinitesimally...

Let ∧ denote an anti-symmetric operation, i.e.

dX ∧ dY = −dY ∧ dX , dX ∧ dX = 0 = dY ∧ dY .

Instead of dXdY , think of area element instead as dX ∧ dY .

dX ∧ dY = (−θ sinφdφ+ cos(φ)dθ) ∧ dφ = cos(φ)dθ ∧ dφ,

i.e. area element for the plane becomes area element for S2.

Dennis The The Mathematics of Maps – Lecture 3 24/31



Sinusoidal projection - 3

Let D = region btw latitudes φ1 ≤ φ2 & longitudes θ1 ≤ θ2. Then

A(Ψ(D)) =

∫ φ2

φ1

(θ2 cos(φ)− θ1 cos(φ))dφ

= (θ2 − θ1)(sin(φ2)− sin(φ1)) = A(D),

Thus, the map is equi-areal. However, we can also arrive at this
infinitesimally...

Let ∧ denote an anti-symmetric operation, i.e.

dX ∧ dY = −dY ∧ dX , dX ∧ dX = 0 = dY ∧ dY .

Instead of dXdY , think of area element instead as dX ∧ dY .

dX ∧ dY = (−θ sinφdφ+ cos(φ)dθ) ∧ dφ = cos(φ)dθ ∧ dφ,

i.e. area element for the plane becomes area element for S2.

Dennis The The Mathematics of Maps – Lecture 3 24/31



Sinusoidal projection - 3

Let D = region btw latitudes φ1 ≤ φ2 & longitudes θ1 ≤ θ2. Then

A(Ψ(D)) =

∫ φ2

φ1

(θ2 cos(φ)− θ1 cos(φ))dφ

= (θ2 − θ1)(sin(φ2)− sin(φ1)) = A(D),

Thus, the map is equi-areal. However, we can also arrive at this
infinitesimally...

Let ∧ denote an anti-symmetric operation, i.e.

dX ∧ dY = −dY ∧ dX , dX ∧ dX = 0 = dY ∧ dY .

Instead of dXdY , think of area element instead as dX ∧ dY .

dX ∧ dY = (−θ sinφdφ+ cos(φ)dθ) ∧ dφ = cos(φ)dθ ∧ dφ,

i.e. area element for the plane becomes area element for S2.

Dennis The The Mathematics of Maps – Lecture 3 24/31



Sinusoidal projection - 3

Let D = region btw latitudes φ1 ≤ φ2 & longitudes θ1 ≤ θ2. Then

A(Ψ(D)) =

∫ φ2

φ1

(θ2 cos(φ)− θ1 cos(φ))dφ

= (θ2 − θ1)(sin(φ2)− sin(φ1)) = A(D),

Thus, the map is equi-areal. However, we can also arrive at this
infinitesimally...

Let ∧ denote an anti-symmetric operation, i.e.

dX ∧ dY = −dY ∧ dX , dX ∧ dX = 0 = dY ∧ dY .

Instead of dXdY , think of area element instead as dX ∧ dY .

dX ∧ dY = (−θ sinφdφ+ cos(φ)dθ) ∧ dφ = cos(φ)dθ ∧ dφ,

i.e. area element for the plane becomes area element for S2.

Dennis The The Mathematics of Maps – Lecture 3 24/31



Area-preserving linear transformations

The following linear map is area-preserving:

dx̃dỹ = (dx + dy)dy , but dx̃ ∧ dỹ = (dx + dy) ∧ dy = dx ∧ dy .

Q: Which linear transformations of the plane preserve dA? Let(
X̃

Ỹ

)
=

(
α β
γ δ

)(
X
Y

)
.

dX̃ ∧ dỸ = (αdX + βdY ) ∧ (γdX + δdY ) = (αδ − βγ)dX ∧ dY

A: det = 1 matrices!
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Mollweide projection
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Mollweide projection

Equi-areal

Parallels are mapped to horizontal line segments

Meridians at θ and −θ 7→ ellipse Eθ. (Axes indep. of θ.)
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Mollweide - 2

E = Eπ: Equi-areal ⇒ Area(S2) = 4π=Area(E ).

C = Eπ/2: bounds the image of a hemisphere, so

Area(C ) = 2π, and C has radius b =
√

2.

Area(E ) = 4π = πab, so a = 2
√

2.

Eθ has semi-axes b =
√

2 and a(θ). On S2, region btw −θ and

θ is a lune with area 2θ
2π4π = 4θ=Area(Eθ). ∴ a(θ) = 2

√
2θ
π .

Thus, Eθ has eqn 1 = X 2

a(θ)2
+ Y 2

b2
= π2X 2

8θ2
+ Y 2

2 .

But what does the map function look like?
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Mollweide - 3

On C , we have X0 =
√

2 cos(τ(φ)) and Y0 = h(φ) =
√

2 sin(τ(φ)).
Since meridians are equally spaced,

Ψ :

{
X = 2

√
2

π θ cos(τ(φ)), −π < θ < π;

Y =
√

2 sin(τ(φ)), −π
2 < φ < π

2

On S2, the area btw Equator and parallel at latitude φ is 2π sinφ.
∴ Strip btw Y = 0 and Y = h(φ) has area 2π sinφ. ∴ Strip inside
C has area π sinφ =

√
2 cos(τ)h + 2 τ

2ππ(
√

2)2 = sin(2τ) + 2τ .
This defines τ(φ) implicitly.
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Mollweide - 4

Check: dX ∧ dY = cosφ dθ ∧ dφ. (Identity π cosφ = 4 cos2(τ)τ ′

follows from differentiating π sinφ = sin(2τ) + 2τ (∗))

Can’t explicitly solve (∗) for τ .

But numerically, this is what
Newton–Raphson approximation is for!

Fix φ0. Define f (τ) = sin(2τ) + 2τ − π sinφ0, −π
2 ≤ τ ≤

π
2 , and

τ0 = 0, τn+1 = τn −
f (τn)

f ′(τn)
.

Iterates will converge to a root of f (τ) = 0.
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Math Of Maps will conclude...

Conformal mappings

Stereographic projection

Mercator projection

What does C have to do with it?
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